Interactive effects of chronic anthropogenic disturbances on Prosopis woodland structure in the Central Monte, Argentina

Authors

  • Carolina Szymañski Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT Conicet Mendoza, Argentina. Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo. Chacras de Coria, Mendoza, Argentina
  • Pablo E. Villagra Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT Conicet Mendoza, Argentina. Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo. Chacras de Coria, Mendoza, Argentina
  • Valeria Aschero Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT Conicet Mendoza, Argentina. Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo. Parque General San Martín, Mendoza, Argentina
  • Juan A. Alvarez Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT Conicet Mendoza, Argentina. Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo. Chacras de Coria, Mendoza, Argentina

DOI:

https://doi.org/10.25260/EA.22.32.1.0.1800

Keywords:

chronic anthropogenic disturbance, dry woodlands, wood extraction, co-management practices, grazing, interactive disturbances

Abstract

In drylands all over the world, chronic anthropic disturbances are relevant factors for woodland degradation. Different disturbances can potentially interact to change vegetation structure. Knowing woodland structure is crucial for better predicting forest dynamic because trees of different sizes significantly affect the regeneration processes, number of saplings and young trees, crown traits and competition attributes. Throughout the Monte biogeographic region, grazing and wood extraction are the main anthropogenic disturbances on Prosopis dry woodlands that can generate modifications in key ecosystem processes. First, we aimed to assess woodland structure at sites under chronic anthropic disturbances. Subsequently, we explored how the combination of grazing and wood extraction affected the population structure of P. flexuosa considered by classes: seedlings, saplings and adults. We found that sites under disturbances presented a high density of trees of smaller sizes. Besides, the interaction effect between grazing and wood extraction depended on the intensities of each of the disturbances. The combination of high intensities of both grazing and wood extraction negatively affected the abundance of all classes, but low or moderate grazing intensities combined with high wood extraction had a positive effect on the abundance of saplings and adults. High intensities of co-occurring disturbances decreased seedling abundance affecting forest recruitment which also was negatively reflected in sapling and adult abundance. However, the combination of low or moderate grazing and high wood extraction generated a woodland structure characterized by few seedlings, and many saplings and adult trees of small size. Application of management options (e.g., spatial or temporal separation of human use, programmed management of grazing and wood extraction intensities or planned practices as wood removal for local use) should contribute to enhance the provision of ecosystem services in Prosopis sp. woodlands without risking regeneration persistence and improving the woodland structure.

References

Abraham, E. M., and M. R. Prieto. 1999. Vitivinicultura y desertificación en Mendoza. Pp. 109-135 in B. García Martínez (ed.). Estudios de historia y ambiente en América: Argentina, Bolivia, México, Paraguay, México. Instituto Panamericano de Geografía e Historia (IPGH), Colegio de México, México.

Abraham, E. M., H. F. del Valle, F. Roig, L. Torres, J. O. Ares, F. Coronato, and R. Godagnone. 2009. Overview of the geography of the Monte Desert biome (Argentina). Journal of Arid Environments 73(2):144-153. https://doi.org/10.1016/j.jaridenv.2008.09.028.

Aguiar, M. R., and O. E. Sala. 1999. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends in Ecology and Evolution 14(7):273-277. https://doi.org/10.1016/S0169-5347(99)01612-2.

Albuquerque, U. P., P. H. S. Gonçalves, W. S. Ferreira Júnior, L. S. Chaves, R. C. da Silva Oliveira, T. L. L. da Silva, G. C. dos Santos, and E. de Lima Araújo. 2018. Humans as niche constructors: Revisiting the concept of chronic anthropogenic disturbances in ecology. Perspectives in Ecology and Conservation 16:1-11. https://doi.org/10.1016/j.pecon.2017.08.006.

Alvarez, J. A. 2008. Bases ecológicas para el manejo sustentable del bosque de algarrobos (Prosopis flexuosa D. C.) en el noreste de Mendoza. Argentina. Título obtenido: Dr. En Ciencias Biológicas. Universidad Nacional del Comahue. Río Negro, Argentina. Pp. 169.

Alvarez, J. A., P. E. Villagra, R. Villalba, M. A. Cony, and M. Alberto. 2011b. Wood productivity of Prosopis flexuosa D.C. woodlands in the central Monte: Influence of population structure and tree-growth habit. Journal of Arid Environment 7:7-13. https://doi.org/10.1016/j.jaridenv.2010.09.003.

Alvarez, J. A., P. E. Villagra, E. M. Cesca, F. Rojas, and S. Delgado. 2015. Estructura, distribución y estado de conservación de los bosques de Prosopis Flexuosa del Bolsón de Fiambalá (Catamarca). Boletín de la Sociedad Argentina de Botánica 50(2):193-208. https://doi.org/10.31055/1851.2372.v50.n2.11663.

Alvarez, J. A., and P. E. Villagra. 2009. Prosopis flexuosa DC. (Fabaceae, Mimosoideae). Kurtziana 35(1):49-63.

Alvarez, J. A., P. E. Villagra, and R. Villalba. 2011a. Factors controlling wood availability and branch decay in two Prosopis woodlands in the Central Monte, Argentina. Forest Ecology and Management 262(4):634-645. https://doi.org/10.1016/j.foreco.2011.04.032.

Amahowe, I. O., O. G. Gaoue, A. K. Natta, C. Piponiot, I. C. Zobiand, and B. Hérault. 2018. Functional traits partially mediate the effects of chronic anthropogenic disturbance on the growth of a tropical tree. AoB Plants 10(3):ply036. https://doi.org/10.1093/aobpla/ply036.

Archer, S. R., E. M. Andersen, K. I. Predick, S. Schwinning, R. J. Steidl, and S. R. Woods. 2017. Woody plant encroachment: causes and consequences. Pp. 25-84 in Rangeland systems. Springer, Cham. https://doi.org/10.1007/978-3-319-46709-2_2.

Aschero, V., W. F. Morris, D. P. Vázquez, J. A. Alvarez, and P. E. Villagra. 2016. Demography and population growth rate of the tree Prosopis flexuosa with contrasting grazing regimes in the Central Monte Desert. Forest Ecology and Management 369:184-190. https://doi.org/10.1016/j.foreco.2016.03.028.

Aschero, V., and D. García. 2012. The fencing paradigm in woodland conservation: Consequences for recruitment of a semi-arid tree. Applied Vegetation Science 15(3):307-317. https://doi.org/10.1111/j.1654-109X.2011.01180.x.

Asner, G., C. Borghi, and R. Ojeda. 2003. Desertification in central Argentina: changes in ecosystem carbon and nitrogen from imaging spectroscopy. Ecological Applications 13:629-648. https://doi.org/10.1890/1051-0761(2003)013[0629:DICACI]2.0.CO;2.

Barton, K. 2020. MuMIn: Multi-Model Inference. R package version 1.43.17. URL: cran.r-project.org/package=MuMIn.

Bastin, J., N. Berrahmouni, A. Grainger, D. Maniatis, D. Mollicone, et al. 2017. The extent of forest in dryland biomes. Science 356(6338):635-638. https://doi.org/10.1126/science.aam6527.

Bates, D., M. Mächler, B. Bolker, and S. Walker. 2014. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software. https://doi.org/10.18637/jss.v067.i01.

Campos, C. M., C. Gimenez, C. Szymañski, and L. Torres. 2019. El uso de los bienes naturales comunes por pobladores dentro de áreas protegidas: el caso de la madera muerta en bosques de Prosopis flexuosa de la Reserva MaB Ñacuñán (Mendoza, Argentina) in Libro de Memorias del V Congreso Latinoamericano y III Congreso Ecuatoriano de Etnobiología, edited by SEEB. Quito, Ecuador. URL: portalseeb.wordpress.com/memorias-congresos.

Campos, C. M., and R. A. Ojeda. 1997. Dispersal and germination of Prosopis flexuosa (Fabaceae) seeds by desert mammals in Argentina. Journal of Arid Environments 35(4):707-714. https://doi.org/10.1006/jare.1996.0196.

Capitanelli, R. 1972. Geomorfología y clima de la provincia de Mendoza. Boletín de la Sociedad Argentina de Botánica 13:15-48.

Cesca, E. M., P. E. Villagra, and J. A. Alvarez. 2014. From forest to shrubland: Structural responses to different fire histories in Prosopis flexuosa woodland from the Central Monte (Argentina). Jounal of Arid Environments 110:1-7. https://doi.org/10.1016/j.jaridenv.2014.05.025.

Chillo, V., and R. A. Ojeda. 2012. Mammal functional diversity loss under human-induced disturbances in arid lands. Journal of Arid Environments 82:95-102. https://doi.org/10.1016/j.jaridenv.2012.06.016.

Chillo, V., and R. A. Ojeda. 2014. Disentangling ecosystem responses to livestock grazing in drylands. Agriculture Ecosystems and Environment 197:271-277. https://doi.org/10.1016/j.agee.2014.08.011.

Cornejo-Oviedo, E. H., J. M. Meyer, and P. Felker. 1991 Thinning dense sapling stands of mesquite (Prosopis glandulosa var. glandulosa) to optimize timber production and pasture improvement. Forest Ecology and Management 46(3-4):189-200. https://doi.org/10.1016/0378-1127(91)90231-J.

Cramer, V. A., R. J. Hobbs, and R. J. Standish. 2008. What’s new about old fields? Land abandonment and ecosystem assembly. Trends in Ecology and Evolution 23:104-112. https://doi.org/10.1016/j.tree.2007.10.005.

Delignette-Muller, M. L., and C. Dutang. 2015. fitdistrplus: An R Package for Fitting Distributions. Journal of Statistical Software, 64(4), 1-34. URL: jstatsoft.org/v64/i04.

Di Rienzo, J. A., M. G. Balzarini, C. W. Robledo, F. Casanoves, L. A. Gonzalez, and E. M. Tablada. 2008. InfoStat Manual del Usuario. Universidad Nacional de Córdoba, Córdoba, Argentina.

FAO 2016. El Estado De Los Bosques Del Mundo 2016. Los bosques y la agricultura: desafíos y oportunidades en relación con el uso de la tierra. Roma. URL: fao.org/3/a-i5588s.pdf.

González-Loyarte, M. M., M. Menenti, P. Weidema, F. A. Roig, and M. Barton. 2000. Mapping vegetation degradation applying remotely sensed data in the arid zones of Argentina. The northeastern plain of Mendoza. Proceedings of United Nations/International Astronautical Federation Workshop on “Operational Strategy for Sustainable Development using Space”. United Nations Committee on the Peaceful Uses of Outer Space and Office for Outer Space Affairs, Sao José dos Campos, Brazil.

González-Roglich, M. 2015. Spatio-Temporal Dynamics of Woody Plant-Cover in Argentine Savannas: Encroachment, Agriculture Conversion and Changes in Carbon Stocks at Varying Scales. Título obtenido: Doctor of Philosophy. Department of Environment in the Graduate School of Duke University. Durham, N. C., United Estates. Pp. 125.

Guevara, J. C., J. B. Cavagnaro, O. R. Estevez, H. N. Le Houérou, and C. R. Stasi. 1997. Productivity, management and development problems in the arid rangelands of the central Mendoza plains (Argentina). Journal of Arid Environments 35:575-600. https://doi.org/10.1006/jare.1996.0194.

Guevara, J. C., E. G. Grünwaldt, O. R. Estevez, A. J. Bisigato, L. J.Blanco, F. N. Biurrun, C. A. Ferrando, C. C. Chirino, E. Morici, B. Fernández, L. I. Allegretti, and C. B. Passera. 2009. Range and livestock production in the Monte Desert, Argentina. Journal of Arid Environment 73:228-237. https://doi.org/10.1016/j.jaridenv.2008.02.001.

Hartig, F. 2020. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.3.3.0. URL: cran.r-project.org/package=DHARMa.

Holmgren, M., et al. 2006. Extreme climatic events shape arid and semiarid ecosystems. Frontiers in Ecology and the Environment 4(2):87-95. https://doi.org/10.1890/1540-9295(2006)004[0087:ECESAA]2.0.CO;2.

Labraga, J. C., and R. Villalba. 2009. Climate in the Monte Desert: Past trends, present conditions, and future projections. Journal of Arid Environments 73(2):154-163. https://doi.org/10.1016/j.jaridenv.2008.03.016.

Leal, I. R., J. M. C. da Silva, M. Tabarelli, and T. E. Lacher. 2005. Changing the Course of Biodiversity Conservation in the Caatinga of Northeastern Brazil. Conservation Biology 19(3):701-706. https://doi.org/10.1111/j.1523-1739.2005.00703.x.

Lenth, R. V. 2021. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.3. URL: cran.r-project.org/package=emmeans.

Mandle, L., and T. Ticktin. 2012. Interactions among fire, grazing, harvest and abiotic conditions shape palm demographic responses to disturbance. Journal of Ecology 100(4):997-1008. https://doi.org/10.1111/j.1365-2745.2012.01982.x.

Malagnoux, M., E. H. Sene, and N. Atzmon. 2007. Bosques, árboles y agua en las tierras áridas: Un equilibrio delicado. Unasylva 58(229):24-29.

Martorell, C., and E. M. Peters. 2005. The measurement of chronic disturbance and its effects on the threatened cactus Mammillaria pectinifera. Biological Conservation 124(2):199-207. https://doi.org/10.1016/j.biocon.2005.01.025.

Meglioli, P. A., J. N. Aranibar, P. E. Villagra, J. A. Alvarez, and E. G. Jobbágy. 2014. Livestock stations as foci of groundwater recharge and nitrate leaching in a sandy desert of the Central Monte, Argentina. Ecohydrology 7(2):600-611. https://doi.org/10.1002/eco.1381.

Morales, M. S., and R. Villalba. 2012. Influence of precipitation pulses on long-term Prosopis ferox dynamics in the Argentinean intermontane subtropics. Oecologia 168(2):381-392. https://doi.org/10.1007/s00442-011-2087-9.

Morrissey, R. C., M. A. Jenkins, and M. R. Saunders. 2014. Accumulation and connectivity of coarse woody debris in partial harvest and unmanaged relict forests. PloS one 9(11):e113323. https://doi.org/10.1371/journal.pone.0113323.

Muñoz-Rojas, M., T. E. Erickson, D. C. Martini, K. W. Dixon, and D. J. Merritt. 2016. Climate and soil factors influencing seedling recruitment of plant species used for dryland restoration. Soil 2:287-298. https://doi.org/10.5194/soil-2-287-2016.

Nakagawa, S., and H. Schielzeth. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4(2):133-142. https://doi.org/10.1111/j.2041-210x.2012.00261.x.

Patch, N. L., and P. Felker. 1997. Silvicultural treatments for sapling mesquite (Prosopis glandulosa var. glandulosa) to optimize timber production and minimize seedling encroachment. Forest Ecology and Management 96(3):231-240. https://doi.org/10.1016/S0378-1127(97)00041-8.

Piraino, S., E. M. Abraham, M. A. Hadad, D. Patón, and F. A. Roig Juñent. 2016. Anthropogenic disturbance impact on the stem growth of Prosopis flexuosa DC forests in the Monte desert of Argentina: A dendroecological approach. Dendrochronologia 42:63-72. https://doi.org/10.1016/j.dendro.2017.01.001.

Podlaski, R., T Sobala, and M. Kocurek. 2019. Patterns of tree diameter distributions in managed and unmanaged Abies alba Mill. and Fagus sylvatica L. forest patches. Forest Ecology and Management 435:97-105. https://doi.org/10.1016/j.foreco.2018.12.046.

R Core Team. 2018. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. URL: r-project.org.

Ribeiro, E. M. S., V. Arroyo-Rodríguez, B. A. Santos, M. Tabarelli, and I. R. Leal. 2015. Chronic anthropogenic disturbance drives the biological impoverishment of the Brazilian Caatinga vegetation. Journal of Applied Ecology 52(3):611-620. https://doi.org/10.1111/1365-2664.12420.

Rossi, B. E. 2004. Flora y vegetación de la Reserva de Biosfera de Ñacuñán después de 25 años de clausura. Heterogeneidad espacial a distintas escalas. Título obtenido: Dra. En Ciencias Biológicas. Universidad Nacional de Cuyo. Mendoza, Argentina. Pp. 152.

Rossi, B. E., and P. E. Villagra. 2003. Effects of Prosopis flexuosa on soil properties and the spatial pattern of understorey species in arid Argentina. Journal of Vegetation Science 14(4):543-550. https://doi.org/10.1111/j.1654-1103.2003.tb02181.x.

Snyman, H. A. 2004. Soil seed bank evaluation and seedling establishment along a degradation gradient in a semi-arid rangeland. African Journal of Range and Forage Science 21(1):37-47. https://doi.org/10.2989/10220110409485832.

Tabeni, S., F. A. Yannelli, N. Vezzani, and L. E. Mastrantonio. 2016. Indicators of landscape organization and functionality in semi-arid former agricultural lands under a passive restoration management over two periods of abandonment. Ecological Indicators 66:488-496. https://doi.org/10.1016/j.ecolind.2016.02.019.

Tabeni, S., F. Spirito, and M. F. Miguel. 2017. Native mammals across grazing and restored woodlands: an overview of ecological connectivity in the central monte desert. Mastozoología Neotropical 24(2):301-312.

Tanquilevich, R. F. 1971. Los suelos de la Reserva Ecológica de Ñacuñán. Deserta 2:131-206.

Tongway, D., and N. Hindley. 2004. Landscape function analysis: a system for monitoring rangeland function. African Journal of Range and Forage Science 21(2):109-113. https://doi.org/http://dx.doi.org/10.2989/10220110409485841.

Torres, E. 2001. Hidrología o recursos hídricos superficiales y subterráneos. Pp. 35-40 in S. Claver and S. Roig-Juñent (eds.). El desierto del Monte: La Reserva de Biósfera de Ñacuñán. IADIZA - MAB - UNESCO, Mendoza, Argentina.

Valone, T. J., and P. Sauter. 2005. Effects of long-term cattle exclosure on vegetation and rodents at a desertified arid grassland site. Journal of Arid Environments 61:161-170. https://doi.org/10.1016/j.jaridenv.2004.07.011.

Vázquez, D. P., J. A. Alvarez, G. Debandi, J. N. Aranibar, and P. E. Villagra. 2011. Ecological consequences of deadwood extraction in an arid ecosystem. Basic and Applied Ecology 12(8):722-732. https://doi.org/10.1016/j.baae.2011.08.009.

Villagra, P. E., and R. Villalba. 2001. Estructura poblacional del algarrobal de la Reserva de Ñacuñán. Pp. 71-75 en S. Claver and S. Roig-Juñent (eds.). El desierto del Monte: La Reserva de Biósfera de Ñacuñán. IADIZA - MAB - UNESCO, Mendoza, Argentina.

Villagra, P. E., M. A. Cony, N. G. Mantován, B. E. Rossi, M. Loyarte González, and R. Villalba. 2004. Ecología y manejo de los algarrobales de la Provincia Fitogeográfica del Monte. Pp. 2-32 in M. F. Arturi, J. L. Frangi and J. F. Goya (eds.). Ecología y Manejo de Bosques Nativos de Argentina. Editorial Universidad Nacional de La Plata, Buenos Aires, Argentina.

Villagra, P. E., R. Villalba, and J. A. Boninsegna. 2005. Structure and growth rate of Prosopis flexuosa woodlands in two contrasting environments of the central Monte desert. Journal of Arid Environments 60(2):187-199. https://doi.org/10.1016/j.jaridenv.2004.03.016.

Villagra, P. E., G. E. Defossé, H. F. del Valle, S. Tabeni, M. Rostagno, E. Cesca, and E. M. Abraham. 2009. Land use and disturbance effects on the dynamics of natural ecosystems of the Monte Desert: Implications for their management. Journal of Arid Environments 73(2):202-211. https://doi.org/10.1016/j.jaridenv.2008.08.002.

Villagra, P. E., and J. A. Alvarez. 2019. Determinantes ambientales y desafíos para el ordenamiento forestal sustentable en los algarrobales del Monte, Argentina. Ecología Austral 29(1):146-155. https://doi.org/10.25260/EA.19.29.1.0.752.

Whitford, W. G., and B. D. Duval. 2019. Ecology of desert systems. Academic Press.

Zar, J. H. 2010. Biostatistical Analysis. 5rd. Ed Hall P. New Jersey: Upper Saddle River.

Interactive effects of chronic anthropogenic disturbances on Prosopis woodland structure in the Central Monte, Argentina

Downloads

Published

2022-01-24

How to Cite

Szymañski, C., Villagra, P. E., Aschero, V. ., & Alvarez, J. A. (2022). Interactive effects of chronic anthropogenic disturbances on Prosopis woodland structure in the Central Monte, Argentina. Ecología Austral, 32(1), 108–121. https://doi.org/10.25260/EA.22.32.1.0.1800