Phytoplankton DNA metabarcoding in four sectors of the SW Atlantic in the context of the global ocean

Authors

  • Federico M. Ibarbalz Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales. Buenos Aires, Argentina. CONICET-Universidad de Buenos Aires. Centro de Investigaciones del Mar y la Atmósfera (CIMA). Buenos Aires, Argentina. Institut FrancoArgentin d'Études sur le Climat et ses Impacts, International Research Laboratory (IRL-IFAECI/CNRS-CONICET-UBA). Buenos Aires, Argentina. Instituto Universitario de Seguridad Marítima, Prefectura Naval Argentina. Buenos Aires, Argentina. Institut de Biologie de l’École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université de Recherche Paris Sciences et Lettres (Université PSL). Paris, France
  • Juan J. Pierella Karlusich Institut de Biologie de l’École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université de Recherche Paris Sciences et Lettres (Université PSL). Paris, France. Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France. FAS Division of Science, Harvard University, Cambridge, MA.
  • Sergio Velasco Ayuso Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales. Buenos Aires, Argentina. CONICET-Universidad de Buenos Aires. Centro de Investigaciones del Mar y la Atmósfera (CIMA). Buenos Aires, Argentina. Institut FrancoArgentin d'Études sur le Climat et ses Impacts, International Research Laboratory (IRL-IFAECI/CNRS-CONICET-UBA). Buenos Aires, Argentina. Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología Genética y Evolución. Buenos Aires, Argentina
  • Natalia Visintini Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales. Buenos Aires, Argentina. CONICET-Universidad de Buenos Aires. Centro de Investigaciones del Mar y la Atmósfera (CIMA). Buenos Aires, Argentina. Institut FrancoArgentin d'Études sur le Climat et ses Impacts, International Research Laboratory (IRL-IFAECI/CNRS-CONICET-UBA). Buenos Aires, Argentina
  • Lionel Guidi Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France. 7 Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire d’Océanographie de Villefranche (LOV), Villefranche-surMer, France
  • Chris Bowler Institut de Biologie de l’École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université de Recherche Paris Sciences et Lettres (Université PSL). Paris, France. Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
  • Pedro Flombaum CONICET-Universidad de Buenos Aires. Centro de Investigaciones del Mar y la Atmósfera (CIMA). Buenos Aires, Argentina. Institut FrancoArgentin d'Études sur le Climat et ses Impacts, International Research Laboratory (IRL-IFAECI/CNRS-CONICET-UBA). Buenos Aires, Argentina. Instituto Universitario de Seguridad Marítima, Prefectura Naval Argentina. Buenos Aires, Argentina. Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología Genética y Evolución. Buenos Aires, Argentina

DOI:

https://doi.org/10.25260/EA.22.32.3.0.1812

Keywords:

phytoplankton, Southwest Atlantic Ocean, primary productivity, biodiversity, 18S rRNA gene

Abstract

The Southwest Atlantic Ocean (SWAO) is a spatially dynamic region with a remarkably high primary productivity. An exhaustive identification of the members of its phytoplankton community is a key step to understand the processes that sustain this ecosystem. Here, we provide a community composition analysis of eukaryotic phytoplankton in four SWAO sectors. We gathered 18S rRNA gene metabarcoding data and complemented it with confocal microscopy images, both from the Tara Oceans expedition in late spring 2010. Our work showed local and regional variation across three different size fractions that reflect the complexity of this region. Diversity decreased along temperature and latitudinal gradients, but also showed intricate patterns of occurrences across samples, suggesting that multiple factors shape the community structure. Samples resembled communities from other temperate regions and showed an increasing influence by cold waters from the Southern Ocean towards higher latitudes. These results complement previous regional studies that used other methods such as microscopy or pigment analysis. Our study contributes to the beginning of genomic-based surveys of plankton communities in the SW Atlantic and calls for further work in the region to enhance ecosystem monitoring and projections in the context of global change.

Ph: Marin LE ROUX (polaRYSE - Fondation Tara Ocean)

References

Acha, E. M., H. W. Mianzan, R. A. Guerrero, M. Favero, and J. Bava. 2004. Marine fronts at the continental shelves of austral South America: physical and ecological processes. Journal of Marine Systems 44:83-105. https://doi.org/10.1016/j.jmarsys.2003.09.005.

Aiken, J., Y. Pradhan, R. Barlow, S. Lavender, A. Poulton, P. Holligan, and N. Hardman-Mountford. 2009. Phytoplankton pigments and functional types in the Atlantic Ocean: A decadal assessment, 1995-2005. Deep Sea Research Part II: Topical Studies in Oceanography 56:899-917. https://doi.org/10.1016/j.dsr2.2008.09.017.

Alberti, A., J. Poulain, S. Engelen, K. Labadie, S. Romac, I. Ferrera, et al. 2017. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Scientific Data 4. https://doi.org/10.1038/sdata.2017.93.

Antacli, J. C., R. I. Silva, A. J. Jaureguizar, D. R. Hernández, M. Mendiolar, M. E. Sabatini, and R. Akselman. 2018. Phytoplankton and protozooplankton on the southern Patagonian shelf (Argentina, 47°-55°S) in late summer: Potentially toxic species and community assemblage structure linked to environmental features. Journal of Sea Research 140:63-80. https://doi.org/10.1016/j.seares.2018.07.012.

Balch, W. M., D. T. Drapeau, B. C. Bowler, E. R. Lyczkowski, L. C. Lubelczyk, S. C. Painter, and A. J. Poulton. 2014. Surface biological, chemical, and optical properties of the Patagonian Shelf coccolithophore bloom, the brightest waters of the Great Calcite Belt. Limnology and Oceanography 59:1715-1732. https://doi.org/10.4319/lo.2014.59.5.1715.

Becker, É. C., M. G. Mazzocchi, L. C. P. de Macedo-Soares, M. C. Brandão, and A. S. Freire. 2021. Latitudinal gradient of copepod functional diversity in the South Atlantic Ocean. Progress in Oceanography 199:102710. https://doi.org/10.1016/j.pocean.2021.102710.

Bendschneider, K., and R. J. Robinson. 1952. A new spectrophotometric method for the determination of nitrite in sea water. Journal of Marine Research 11:87-96.

Berasategui, A. D., F. C. Ramírez, and A. Schiariti. 2005. Patterns in diversity and community structure of epipelagic copepods from the Brazil-Malvinas Confluence area, south-western Atlantic. Journal of Marine Systems 56:309-316. https://doi.org/10.1016/j.jmarsys.2004.12.002.

Bianchi, A. A., D. R. Pino, H. G. I. Perlender, A. P. Osiroff, V. Segura, V. Lutz, M. L. Clara, C. F. Balestrini, and A. R. Piola. 2009. Annual balance and seasonal variability of sea-air CO2 fluxes in the Patagonia Sea: Their relationship with fronts and chlorophyll distribution. Journal of Geophysical Research: Oceans 114. https://doi.org/10.1029/2008JC004854.

Brandini, F. P., D. Boltovskoy, A. Piola, S. Kocmur, R. Röttgers, P. C. Abreu, and R. M. Lopes. 2000. Multiannual trends in fronts and distribution of nutrients and chlorophyll in the southwestern Atlantic (30-62 S). Deep Sea Research Part I: Oceanographic Research Papers 47:1015-1033. https://doi.org/10.1016/S0967-0637(99)00075-8.

Brun, A. A., N. Ramirez, O. Pizarro, and A. R. Piola. 2020. The role of the Magellan Strait on the southwest South Atlantic shelf. Estuarine, Coastal and Shelf Science 237:106661. https://doi.org/10.1016/j.ecss.2020.106661.

Campos, E. J. D., J. E. Gonçalves, and Y. Ikeda. 1995. Water mass characteristics and geostrophic circulation in the South Brazil Bight: Summer of 1991. Journal of Geophysical Research: Oceans 100:18537-18550. https://doi.org/10.1029/95JC01724.

Carreto, J., V. A. Lutz, M. O. Carignan, A. D. C. Colleoni, and S. G. De Marco. 1995. Hydrography and chlorophyll a in a transect from the coast to the shelf-break in the Argentinian Sea. Continental Shelf Research 15:315-336. https://doi.org/10.1016/0278-4343(94)E0001-3.

Colin, S., L. P. Coelho, S. Sunagawa, C. Bowler, E. Karsenti, P. Bork, R. Pepperkok, and C. de Vargas. 2017. Quantitative 3D-imaging for cell biology and ecology of environmental microbial eukaryotes. Elife 6:e26066. https://doi.org/10.7554/eLife.26066.

d’Ovidio, F., S. De Monte, S. Alvain, Y. Dandonneau, and M. Lévy. 2010. Fluid dynamical niches of phytoplankton types. Proceedings of the National Academy of Sciences 107:18366-18370. https://doi.org/10.1073/pnas.1004620107.

Delmont, T. O., C. Quince, A. Shaiber, Ö. C. Esen, S. T. Lee, M. S. Rappé, S. L. MacLellan, S. Lücker, and A. M. Eren. 2018. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nature Microbiology 3:804-813. https://doi.org/10.1038/s41564-018-0176-9.

de Vargas, C., S. Audic, N. Henry, J. Decelle, F. Mahe, et al. 2015. Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605(1:11).

Finkel, Z. V. 2007. Does Phytoplankton Cell Size Matter? The Evolution of Modern Marine Food Webs. Pp. 333-350 in P. G. Falkowski and A. H. Knoll (eds.). Evolution of Primary Producers in the Sea. Academic Press, Burlington. https://doi.org/10.1016/B978-012370518-1/50016-3.

Flombaum, P., J. L. Gallegos, R. A. Gordillo, J. Rincón, L. L. Zabala, N. Jiao, D. M. Karl, W. K. W. Li, M. W. Lomas, D. Veneziano, C. S. Vera, J. A Vrugt, and A. C. Martiny. 2013. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proceedings of the National Academy of Sciences 110:9824-9. https://doi.org/10.1073/pnas.1307701110.

Gayoso, A. M., and G. P. Podestá. 1996. Surface hydrography and phytoplankton of the Brazil-Malvinas currents confluence. Journal of Plankton Research 18:941-951. https://doi.org/10.1093/plankt/18.6.941.

Gibb, S. W., R. G. Barlow, D. G. Cummings, N. W. Rees, C. C. Trees, P. Holligan, and D. Suggett. 2000. Surface phytoplankton pigment distributions in the Atlantic Ocean: an assessment of basin scale variability between 50 N and 50 S. Progress in Oceanography 45:339-368. https://doi.org/10.1016/S0079-6611(00)00007-0.

Gonçalves-Araujo, R., M. S. de Souza, C. R. B. Mendes, V. M. Tavano, and C. A. E. Garcia. 2016. Seasonal change of phytoplankton (spring vs. summer) in the southern Patagonian shelf. Continental Shelf Research 124:142-152. https://doi.org/10.1016/j.csr.2016.03.023.

Goni, G. J., F. Bringas, and P. N. Dinezio. 2011. Observed low frequency variability of the Brazil Current front. Journal of Geophysical Research: Oceans 116. https://doi.org/10.1029/2011JC007198.

Guidi, L., S. Chaffron, L. Bittner, D. Eveillard, A. Larhlimi, S. Roux, Y. Darzi, S. Audic, L. Berline, J. Brum, L. P. Coelho, J. C. I. Espinoza, S. Malviya, S. Sunagawa, C. Dimier, S. Kandels-Lewis, M. Picheral, J. Poulain, S. Searson, T. O. Coordinators, L. Stemmann, F. Not, P. Hingamp, S. Speich, M. Follows, L. Karp-Boss, E. Boss, H. Ogata, S. Pesant, J. Weissenbach, P. Wincker, S. G. Acinas, P. Bork, C. de Vargas, D. Iudicone, M. B. Sullivan, J. Raes, E. Karsenti, C. Bowler, and G. Gorsky. 2016. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532:465-470. https://doi.org/10.1038/nature16942.

Hingamp, P., N. Grimsley, S. G. Acinas, C. Clerissi, L. Subirana, J. Poulain, I. Ferrera, H. Sarmento, E. Villar, G. Lima-Mendez, K. Faust, S. Sunagawa, J.-M. Claverie, H. Moreau, Y. Desdevises, P. Bork, J. Raes, C. de Vargas, E. Karsenti, S. Kandels-Lewis, O. Jaillon, F. Not, S. Pesant, P. Wincker, and H. Ogata. 2013. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. The ISME journal 7:1678-1695. https://doi.org/10.1038/ismej.2013.59.

Hoffmeyer, M. S., M. E. Sabatini, F. P. Brandini, D. L. Calliari, and N. H. Santinelli. 2018. Plankton ecology of the Southwestern Atlantic: From the subtropical to the subantarctic Realm. https://doi.org/10.1007/978-3-319-77869-3.

Ibarbalz, F. M., N. Henry, M. C. Brandão, S. Martini, G. Busseni, et al. 2019. Global trends in marine plankton diversity across kingdoms of life. Cell 179:1084-1097. https://doi.org/10.1016/j.cell.2019.10.008.

Karsenti, E., S. G. Acinas, P. Bork, C. Bowler, C. De Vargas, J. Raes, M. Sullivan, D. Arendt, F. Benzoni, J.-M. Claverie, M. Follows, G. Gorsky, P. Hingamp, D. Iudicone, O. Jaillon, S. Kandels-Lewis, U. Krzic, F. Not, H. Ogata, S. Pesant, E. G. Reynaud, C. Sardet, M. E. Sieracki, S. Speich, D. Velayoudon, J. Weissenbach, P. Wincker, and T. O. Consortium. 2011. A holistic approach to marine eco-systems biology. PLoS Biol 9:e1001177. https://doi.org/10.1371/journal.pbio.1001177.

Legeckis, R., and A. L. Gordon. 1982. Satellite observations of the Brazil and Falkland currents- 1975 1976 and 1978. Deep Sea Research Part A, Oceanographic Research Papers 29:375-401. https://doi.org/10.1016/0198-0149(82)90101-7.

Leyba, I. M., S. A. Solman, and M. Saraceno. 2019. Trends in sea surface temperature and air-sea heat fluxes over the South Atlantic Ocean. Climate Dynamics 53:4141-4153. https://doi.org/10.1007/s00382-019-04777-2.

Mahé, F., T. Rognes, C. Quince, C. de Vargas, and M. Dunthorn. 2014. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2:e593. https://doi.org/10.7717/peerj.593.

Malviya, S., E. Scalco, S. Audic, F. Vincent, A. Veluchamy, J. Poulain, P. Wincker, D. Iudicone, C. de Vargas, L. Bittner, A. Zingone, and C. Bowler. 2016. Insights into global diatom distribution and diversity in the world’s ocean. Proceedings of the National Academy of Sciences 113:E1516-E1525. https://doi.org/10.1073/pnas.1509523113.

Moreno, D. V., J. P. Marrero, J. Morales, C. L. García, M. G. V. Úbeda, M. J. Rueda, and O. Llinás. 2012. Phytoplankton functional community structure in Argentinian continental shelf determined by HPLC pigment signatures. Estuarine, Coastal and Shelf Science 100:72-81. https://doi.org/10.1016/j.ecss.2012.01.007.

Nemergut, D. R., S. K. Schmidt, T. Fukami, S. P. O’Neill, T. M. Bilinski, L. F. Stanish, J. E. Knelman, J. L. Darcy, R. C. Lynch, P. Wickey, and S. Ferrenberg. 2013. Patterns and processes of microbial community assembly. Microbiology and Molecular Biology Reviews 77:342-356. https://doi.org/10.1128/MMBR.00051-12.

Nunes, S., G. Pérez, M. Latasa, M. Zamanillo, M. Delgado, E. Ortega Retuerta, C. Marrasé, R. Simó, and M. Estrada. 2019. Size fractionation, chemotaxonomic groups and bio-optical properties of phytoplankton along a transect from the Mediterranean Sea to the SW Atlantic Ocean Sdena. Scientia Marina 83:87-109. https://doi.org/10.3989/scimar.04866.10A.

Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, and H. Wagner. 2019. vegan: Community Ecology Package. R package version 2.5-4.

Olguin Salinas, H. F., and V. A. Alder. 2011. Species composition and biogeography of diatoms in antarctic and subantarctic (Argentine shelf) waters (37-76 S). Deep Sea Research Part II: Topical Studies in Oceanography 58:139-152. https://doi.org/10.1016/j.dsr2.2010.09.031.

Olguin Salinas, H. F., V. A. Alder, A. Puig, and D. Boltovskoy. 2015a. Latitudinal diversity patterns of diatoms in the Southwestern Atlantic and Antarctic waters. Journal of Plankton Research 37:659-665. https://doi.org/10.1093/plankt/fbv042.

Olguin Salinas, H. F., F. Brandini, and D. Boltovskoy. 2015b. Latitudinal patterns and interannual variations of spring phytoplankton in relation to hydrographic conditions of the southwestern Atlantic Ocean (34-62 S). Helgoland Marine Research 69:177-192. https://doi.org/10.1007/s10152-015-0427-6.

Pante, E., and B. Simon-Bouhet. 2013. marmap: A Package for Importing, Plotting and Analyzing Bathymetric and Topographic Data in R. PLoS ONE 8. https://doi.org/10.1371/journal.pone.0073051.

Pesant, S., F. Not, M. Picheral, S. Kandels-Lewis, N. Le Bescot, G. Gorsky, D. Iudicone, E. Karsenti, S. Speich, R. Troublé, C. Dimier, and S. Searson. 2015. Open science resources for the discovery and analysis of Tara Oceans data. Scientific Data 2:150023. https://doi.org/10.1038/sdata.2015.23.

Picheral, M., S. Colin, and J.-O. Irisson. 2017. EcoTaxa, a tool for the taxonomic classification of images. URL: ecotaxa.obs-vlfr.fr.

Pierella Karlusich, J. J., F. M. Ibarbalz, and C. Bowler. 2020. Phytoplankton in the Tara Ocean. Annual Review of Marine Science 12:233-265. https://doi.org/10.1146/annurev-marine-010419-010706.

Pierella Karlusich, J. J., E. Pelletier, F. Lombard, M. Carsique, E. Dvorak, S. Colin, M. Picheral, F. M. Cornejo-Castillo, S. G. Acinas, R. Pepperkok, E. Karsenti, C. de Vargas, P. Wincker, C. Bowler, and R. A. Foster. 2021. Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods. Nature Communications 12:1-18. https://doi.org/10.1038/s41467-021-24299-y.

Piola, A. R., and A. L. Gordon. 1989. Intermediate waters in the southwest South Atlantic. Deep Sea Research Part A. Oceanographic Research Papers 36:1-16. https://doi.org/10.1016/0198-0149(89)90015-0.

Ras, J., H. Claustre, and J. Uitz. 2008. Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data. Biogeosciences 5:353-369. https://doi.org/10.5194/bg-5-353-2008.

Righetti, D., M. Vogt, N. Gruber, A. Psomas, and N. E. Zimmermann. 2019. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Science Advances 5:eaau6253. https://doi.org/10.1126/sciadv.aau6253.

Segura, V., V. A. Lutz, A. Dogliotti, R. I. Silva, R. M. Negri, R. Akselman, and H. Benavides. 2013. Phytoplankton types and primary production in the Argentine Sea. Marine Ecology Progress Series 491:15-31. https://doi.org/10.3354/meps10461

Silva, R., R. Negri, and V. Lutz. 2009. Summer succession of ultraphytoplankton at the EPEA coastal station (Northern Argentina). Journal of Plankton Research 31:447-458. https://doi.org/10.1093/plankt/fbn128.

Simon, N., A.-L. Cras, E. Foulon, and R. Lemée. 2009. Diversity and evolution of marine phytoplankton. Comptes Rendus Biologies 332:159-170. https://doi.org/10.1016/j.crvi.2008.09.009.

Smetacek, V. 2001. A watery arms race. Nature 411:745. https://doi.org/10.1038/35081210.

Sommeria-Klein, G., R. Watteaux, F. M. Ibarbalz, J. J. P. Karlusich, D. Iudicone, C. Bowler, and H. Morlon. 2021. Global drivers of eukaryotic plankton biogeography in the sunlit ocean. Science 374:594-599. https://doi.org/10.1126/science.abb3717.

Sunagawa, S., S. G. Acinas, P. Bork, C. Bowler, D. Eveillard, G. Gorsky, L. Guidi, D. Iudicone, E. Karsenti, F. Lombard, H. Ogata, S. Pesant, M. B. Sullivan, P. Wincker, and C. de Vargas. 2020. Tara Oceans: towards global ocean ecosystems biology. Nature Reviews Microbiology 18:428-445.

Sunagawa, S., L. P. Coelho, S. Chaffron, J. R. Kultima, K. Labadie, et al. 2015. Structure and function of the global ocean microbiome. Science 348:1-10. https://doi.org/10.1126/science.1261359.

Thompson, G. A. 2004. Tintinnid diversity trends in the southwestern Atlantic Ocean (29 to 60 S). Aquatic Microbial Ecology 35:93-103. https://doi.org/10.3354/ame035093.

Thompson, G. A., E. O. Dinofrio, and V. A. Alder. 2013. Structure, abundance and biomass size spectra of copepods and other zooplankton communities in upper waters of the Southwestern Atlantic Ocean during summer. Journal of Plankton Research 35:610-629. https://doi.org/10.1093/plankt/fbt014.

Valla, D., A. R. Piola, C. S. Meinen, and E. Campos. 2018. Strong Mixing and Recirculation in the Northwestern Argentine Basin. Journal of Geophysical Research: Oceans 123:4624-4648. https://doi.org/10.1029/2018JC013907.

Van Heukelem, L., and C. S. Thomas. 2001. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. Journal of Chromatography A 910:31-49. https://doi.org/10.1016/S0378-4347(00)00603-4.

Villar, E., G. K. Farrant, M. Follows, L. Garczarek, S. Speich, et al. 2015. Environmental characteristics of Agulhas rings affect interocean plankton transport. Science 348. https://doi.org/10.1126/science.1261447.

Vincent, F. J., S. Colin, S. Romac, E. Scalco, L. Bittner, Y. Garcia, R. M. Lopes, J. R. Dolan, A. Zingone, C. De Vargas, et al. 2018. The epibiotic life of the cosmopolitan diatom Fragilariopsis doliolus on heterotrophic ciliates in the open ocean. The ISME Journal 12:1094-1108. https://doi.org/10.1038/s41396-017-0029-1.

Wilkins, D., E. Van Sebille, S. R. Rintoul, F. M. Lauro, and R. Cavicchioli. 2013. Advection shapes Southern Ocean microbial assemblages independent of distance and environment effects. Nature Communications 4. https://doi.org/10.1038/ncomms3457.

Yoder, J. A., and M. A. Kennelly. 2003. Seasonal and ENSO variability in global ocean phytoplankton chlorophyll derived from 4 years of SeaWiFS measurements. Global Biogeochemical Cycles 17. https://doi.org/10.1029/2002GB001942.

Zehr, J. P., J. B. Waterbury, P. J. Turner, J. P. Montoya, E. Omoregie, G. F. Steward, A. Hansen, and D. M. Karl. 2001. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412:635-638. https://doi.org/10.1038/35088063.

Análisis de metabarcoding de ADN para el fitoplancton en cuatro sectores del Atlántico Suroeste en el contexto del océano global

Downloads

Additional Files

Published

2022-09-24

How to Cite

Ibarbalz, F. M., Pierella Karlusich, J. J., Velasco Ayuso, S., Visintini, N., Guidi, L., Bowler, C., & Flombaum, P. (2022). Phytoplankton DNA metabarcoding in four sectors of the SW Atlantic in the context of the global ocean. Ecología Austral, 32(3), 835–848. https://doi.org/10.25260/EA.22.32.3.0.1812