Cryptogam communities as potential indicators of post-fire recovery in the piedmont

Authors

  • Cecilia Zabala Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo. Mendoza, Argentina
  • Julieta Aranibar Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET-CCT. Mendoza, Argentina. Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
  • Daniela Rodriguez Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo. Mendoza, Argentina. Instituto Argentino de Investigaciones de las Zonas Áridas (IADIZA) - CONICET. Mendoza, Argentina

DOI:

https://doi.org/10.25260/EA.23.33.1.0.1820

Keywords:

biological soil crusts, mosses, recovery, epiphytic lichens

Abstract

Among the disturbances affecting terrestrial ecosystems, fire is one of the most important in the Monte ecoregion of Argentina. In the foothills, recurrent fires generate changes in the composition of the vegetation and the physiognomy of the landscape, without knowledge of the effects of fire on cryptogams. Cryptogams include biological soil crusts (BSC), corticolous and saxicolous lichens, and mosses. These communities are crucial in degraded ecosystems and in arid zones by fixing nitrogen and stabilizing the soil. Furthermore, some of the organisms of BSC develop quite slowly and are sensitive to disturbances, which makes them potentially useful as indicators of disturbance or recovery. In this work, we evaluate the cover and frequency of functional types of cryptogams, as well as the environmental factors that favor their development in sites with different fire histories, in order to identify potential indicators of post-fire recovery. We found that saxicolous and corticolous lichen frequency, BSC cover and cyanobacterial-dominated BSC frequency varied as a function of post-fire recovery time. Their cover and frequency were also affected by the cover of vascular plants, bare soil, rocks and mounds generated by animals. These variations in abundance can be used as indicators of the success of passive ecological restoration strategies. Corticolous and saxicolous lichens may function as indicators of post-fire recovery as they are only present on sites with +40 years since the latest fire and showed a greater response than vascular plants. On the other hand, CBS dominated by cyanobacteria —being more abundant in sites with recent fires— would be good indicators of more recent soil recovery processes. The wide distribution of BSC dominated by mosses, and the development of cyanobacteria in recently disturbed places, highlight the potential of these two groups of organisms to actively and more quickly restore arid ecosystems degraded by fires.

References

Barton, K. 2020. MuMIn: Multi-Model Inference. URL: cran.r-project.org/package=MuMIn.

Belnap, J., and O. L. Lange (eds.). 2003. Biological Soil Crusts: Structure, Function, and Management. Ecological Studies series. 1st edition. Springer-Verlag, Berlin, Heidelberg. Pp. 506. https://doi.org/10.1007/978-3-642-56475-8.

Bowker, M. A. 2007. Biological Soil Crust Rehabilitation in Theory and Practice: An Underexploited Opportunity. Restoration Ecology 15:13-23. https://doi.org/10.1111/j.1526-100X.2006.00185.x.

Bowker, M. A., S. Soliveres, and F. T. Maestre. 2010. Competition increases with abiotic stress and regulates the diversity of biological soil crusts. Journal of Ecology 98(3):551-560. https://doi.org/10.1111/j.1365-2745.2010.01647.x.

Burnham, K. P., and D. R. Anderson (eds.). 2004. Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach. Springer. https://doi.org/10.1007/b97636.

Cesca, E., P. E. Villagra, and J. A. Álvarez. 2014. From forest to shrubland: Structural responses to different fire histories in Prosopis flexuosa woodland from the Central Monte (Argentina). Journal of Arid Environments 110:1-7. https://doi.org/10.1016/j.jaridenv.2014.05.025.

Chiaradia, G. 2021. Dinámica post-fuego de la comunidad vegetal y del funcionamiento del paisaje en la Reserva Natural Privada Villavicencio. Tesis de Grado, Ingeniería en Recursos Naturales Renovables, Facultad de Ciencias Agrarias, UNCuyo.

Dalmasso, A., E. Carretero, F. Videla, R. Candia, and S. Puig. 1999. Reserva Natural Villavicencio (Mendoza, Argentina). Plan de Manejo. Multequina 8:11-50.

De Paz, M., M. Gobbi, and E. Raffaele. 2013. Mantillo de las especies leñosas de matorrales del NO de la Patagonia: abundancia, composición, estructura y heterogeneidad. Boletín de la Sociedad Argentina de Botánica 48:525-541. https://doi.org/10.31055/1851.2372.v48.n3-4.7607.

Delignette-Muller, M. L., and C. Dutang. 2015. fitdistrplus: An R Package for Fitting. Journal of Statistical Software 64:1-34. https://doi.org/10.18637/jss.v064.i04.

Dettweiler-Robinson, E., J. Bakker, and J. Grace. 2013. Controls of biological soil crust cover and composition shift with succession in sagebrush shrub-steppe. Journal of Arid Environments 94:96-104. https://doi.org/10.1016/j.jaridenv.2013.01.013.

Elbert, W., B. Weber, S. Burrows, et al. 2012. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geosci 5:459-462. https://doi.org/10.1038/ngeo1486.

Fernández, R., M. D. Rodríguez, M. S. Albanese, and G. Miranda. 2017. El fuego como factor modelador de la estructura poblacional de Calomys musculinus en el Desierto del Monte, Mendoza, Argentina. V Congreso Nacional de la Biodiversidad. Las Grutas, Río Negro, Argentina.

Flannigan, M., and J. B. Harrington. 1988. A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1953-80). Journal of Applied Meteorology 27:441-452. https://doi.org/10.1175/1520-0450(1988)027%3C0441:ASOTRO%3E2.0.CO;2.

Fundación Villavicencio. 2015. Registros de incendios y detección de áreas quemadas en Reserva Natural Villavicencio. Informe, Área Técnica. Mendoza, Argentina.

García, V., J. N. Aranibar, and N. Pietrasiak. 2015. Multiscale effects on biological soil crusts cover and spatial distribution in the Monte Desert. Acta Oecologica 69:35-45. https://doi.org/10.1016/j.actao.2015.08.005.

González, M., M. Amoroso, A. Lara, T. Veblen, C. Donoso, et al. 2014. Ecología de disturbios y su influencia en los ecosistemas forestales templados de Chile y Argentina. Pp. 411-502 en C. Donoso, M. González and A. Lara (eds.). Ecología Forestal: Bases para el Manejo Sustentable de los Bosques Nativos. Editorial Universidad Austral de Chile.

Granados-Sánchez, D., G. F. López-Ríos, M. A. Hernández-García, and A. Sánchez-González. 2003. Ecología De Las Plantas Epífitas. Revista Chapingo. Serie Ciencias Forestales y del Ambiente 9(2):101-111.

Hawkes, C. V., and V. R. Flechtner. 2002. Biological soil crusts in a xeric Florida shrubland: composition, abundance, and spatial heterogeneity of crusts with different disturbance histories. Microbial Ecology 1:1-12. https://doi.org/10.1007/s00248-001-1017-5.

Hawksworth, D., T. Iturriaga, and A. Crespo. 2005. Líquenes como bioindicadores inmediatos de contaminación y cambios medioambientales en los trópicos. Revista Iberoamericana de Micología 22:71-82. https://doi.org/10.1016/S1130-1406(05)70013-9.

Johansen, J. R., and L. Clair. 1986. Cryptogamic soil crusts: recovery from grazing near Camp Floyd State Park, Utah, USA. Great Basin Naturalist 46:632-640.

Johansen, J. R. 2001. Impacts of Fire on Biological Soil Crusts. Pp. 393-395 en J. Belnap and O. L. Lange (eds.). Biological Soil Crusts: Structure, Function, and Management. Ecological Studies series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56475-8_28.

Li, X., P. Zhang, S. Yangui, and J. Rong-Liang. 2012. Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: A four-year field study. Catena 97:119-126. https://doi.org/10.1016/j.catena.2012.05.009.

Liu, Y., X. Li, Z. Xing, X. Zhao, and Y. Pan. 2013. Responses of soil microbial biomass and community composition to biological soil crusts in the revegetated areas of the Tengger Desert. Applied Soil Ecology 65:52-59. https://doi.org/10.1016/j.apsoil.2013.01.005.

Martínez Carretero, E. 1995. Los incendios forestales en la Argentina. Multequina 4:105-114.

Mataix-Solera, J., and A. Cerdà. 2009. Los efectos de los incendios forestales en los suelos. Síntesis y conclusiones. Nuevos retos en la investigación y en la gestión. Pp. 493-529 en Efectos de los incendios forestales sobre los suelos en España. El estado de la cuestión visto por los científicos españoles. Universitat de Valencia. España.

McLauchlan, K., P. Higuera, J. Miesel, B. Rogers, J. Schweitzer, et al. 2020. Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology 108:2047-2069. https://doi.org/10.1111/1365-2745.13403.

Mistry, J. 1998. Corticolous lichens as potential bioindicators of fire history: a study in the Cerrado of the Distrito Federal, central Brazil. Journal of Biogeography 25:409-441. https://doi.org/10.1046/j.1365-2699.1998.2530409.x.

Nanni, A. S., D. Rodríguez, M. Rogueiro, M. E. Periago, S. Aguiar, et al. 2020. Presiones sobre la conservación asociadas al uso de la tierra en las ecorregiones terrestres de la Argentina. Ecología Austral 30:175-330. https://doi.org/10.25260/EA.20.30.2.0.1056.

Navas Romero, A. L. 2019. Funciones ecosistémicas y atributos ecológicos de las costras biológicas en el centro-oeste de la Argentina. Doctorado en Biología (PROBIOL). Universidad Nacional de Cuyo. Mendoza. Argentina. Pp. 229.

Perazzo, A., and J. M. Rodríguez. 2019. Impacto del fuego sobre la vegetación no vascular del suelo: un caso de estudio en los bosques de Polylepis australis (Rosaceae) del centro de Argentina. Lilloa. 56(2):67-80. https://doi.org/10.30550/j.lil/2019.56.2/6.

Perry, D. A. 2008. Forest ecosystems. Johns Hopkins University Press, Baltimore, USA.

Pietrasiak, N., J. R. Johansen, T. LaDoux., and R. C. Graham. 2011. Comparison of Disturbance Impacts to and Spatial Distribution of Biological Soil Crusts in the Little San Bernardino Mountains of Joshua Tree National Park, California. Western North American Naturalist 71(4):539-552. https://doi.org/10.3398/064.071.0412.

Rodríguez, J. M., C. Estrabou, R. P. Fenoglio, F.O. Robbiati, M. C. Salas, et al. 2009. Recuperación post-fuego de la comunidad de líquenes epífitos en la provincia de Córdoba, Argentina. Acta Botanica Brasilica 23:854-859. https://doi.org/10.1590/S0102-33062009000300026.

Rodríguez, J. M., D. Renison, E. Filippini, and C. Estrabou. 2017. Climate change in the mountains: insights from a study of saxicolous lichen communities in relation to altitude and microsite. Biodiversity and Conservation 26:1199-1215. https://doi.org/10.1007/s10531-017-1293-0.

Roig, F. A., and E. Martínez Carretero. 1998. La vegetación puneña en la provincia de Mendoza, Argentina. Phytocoenologia 28:565-608. https://doi.org/10.1127/phyto/28/1998/565.

RStudioTeam. 2020. Integrated Development for R. RStudio.

Tabeni, S., I. A. Garibotti, C. Pissolito, and J. N. Aranibar. 2014. Grazing effects on biological soil crusts and their interaction with shrubs and grasses in an arid rangeland. Journal of Vegetation Science 25(6):1417-1425. https://doi.org/10.1111/jvs.12204.

Villagra, P., G. Defossé, H. Del Valle, M. Tabeni, C. Rostagno, E. Cesca, and E. Abraham. 2009. Land use and disturbance effects on the dynamics of natural ecosystems of the Monte Desert: Implications for their management. Journal of Arid Environments 73(2):202-211. https://doi.org/10.1016/j.jaridenv.2008.08.002.

Weber, B., B. Budel, and J. Belnap. 2016. Biological Soil Crusts: An Organizing Principle in Drylands. Springer. https://doi.org/10.1007/978-3-319-30214-0.

White P. S. 1979. Pattern, process and natural disturbance in vegetation. Botanical Review 45:229-299. https://doi.org/10.1007/BF02860857.

Wong, C. S., and W. K. Li. 1998. A note on the corrected Akaike information criterion for threshold autoregressive models. Journal of Time Series Analysis 19:113-124. https://doi.org/10.1111/1467-9892.00080.

Zhang, Y., A. L. Aradottir, M. Serpe, and B. Boeken. 2016 Interactions of Biological Soil Crusts with Vascular Plants. Pp. 385-406 in B. Weber, B. Büdel and J. Belnap (eds.). Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-30214-0_19.

Zivkovic, L., E. Martínez Carretero, A. Dalmasso, and M. Almirón. 2013. Carbono acumulado en la biomasa vegetal de la reserva de Villavicencio (Mendoza-Argentina). Boletín de la Sociedad Argentina de Botánica 48(3-4):543-551. https://doi.org/10.31055/1851.2372.v48.n3-4.7608.

Cryptogam communities as potential indicators of post-fire recovery in the piedmont

Published

2023-02-12

How to Cite

Zabala, C., Aranibar, J., & Rodriguez, D. (2023). Cryptogam communities as potential indicators of post-fire recovery in the piedmont. Ecología Austral, 33(1), 108–123. https://doi.org/10.25260/EA.23.33.1.0.1820