Ecological interaction networks. What we know, what we don’t, and why it matters
DOI:
https://doi.org/10.25260/EA.22.32.2.1.1846Keywords:
global change, indirect interactions, interaction frequency, interaction strength, modularity, multilayer networks, nestedness, network nodes, network patterns, neutral processes, niche processes, sampling effects, species interactions, species rolesAbstract
Species coexisting in ecological communities interact in multiple ways to form complex networks. We review the growing literature on ecological interaction networks to address several key issues about this conceptual and methodological approach. We start by asking the most basic question: Why study networks and whether a network approach is (or is not) useful to understand the ecology of interacting species, the functioning and stability of the communities they belong to, and their response to global change drivers. We also discuss the multiple meanings of network nodes as individuals, populations and species, the different ways of quantifying node roles, the multiple meanings of links as presence/absence of interactions, per capita interaction strengths and species-level effects, and the available approaches to study networks with different types of interactions. Then, we review the structural patterns emerging in ecological interaction networks and the mechanisms driving network structure and function, identifying both what we already know and the knowledge gaps that we still need to fill in. We also discuss sampling effects and their influence in distorting observed network patterns. Finally, we review how different drivers of global environmental change influence the structure, dynamics and stability of ecological networks. With this review we hope to offer a balanced overview of what we have learned in the study of ecological interaction networks and point to several key avenues of research for the next decade.
References
Acevedo‐Quintero, J. F., J. G. Zamora‐Abrego, and D. García. 2020. From structure to function in mutualistic interaction networks: Topologically important frugivores have greater potential as seed dispersers. Journal of Animal Ecology 89:2181-2191. https://doi.org/10.1111/1365-2656.13273.
Aizen, M. A., C. L. Morales, and J. M. Morales. 2008. Invasive mutualists erode native pollination webs. PLoS Biology 6:e31. https://doi.org/10.1371/journal.pbio.0060031.
Alarcón, R., N. M. Waser, and J. Ollerton. 2008. Year-to-year variation in the topology of a plant-pollinator interaction network. Oikos 117:1796-1807. https://doi.org/10.1111/j.0030-1299.2008.16987.x.
Albrecht, M., B. Padrón, I. Bartomeus, and A. Traveset. 2014. Consequences of plant invasions on compartmentalization and species’ roles in plant-pollinator networks. Proceedings of the Royal Society B: Biological Sciences 281:20140773. https://doi.org/10.1098/rspb.2014.0773.
Alhmedi, A., E. Haubruge, S. D’Hoedt, and F. Francis. 2011. Quantitative food webs of herbivore and related beneficial community in non-crop and crop habitats. Biological Control 58:103-112. https://doi.org/10.1016/j.biocontrol.2011.04.005.
al-Jāḥiẓ. 1323. Kitāb al-Ḥayawān. Cairo, Egypt.
Arroyo‐Correa, B., I. Bartomeus, and P. Jordano. 2021. Individual‐based plant-pollinator networks are structured by phenotypic and microsite plant traits. Journal of Ecology 109(8):2832-2844. https://doi.org/10.1111/1365-2745.13694.
Banasek-Richter, C., M.-F. Cattin, and L.-F. Bersier. 2004. Sampling effects and the robustness of quantitative and qualitative food-web descriptors. Journal of Theoretical Biology 226:23-32. https://doi.org/10.1016/S0022-5193(03)00305-9.
Bascompte, J. 2009. Disentangling the Web of Life. Science 325:416-419. https://doi.org/10.1126/science.1170749.
Bascompte, J., and P. Jordano. 2014. Mutualistic Networks. Princeton University Press, Princeton, New Jersey. https://doi.org/10.23943/princeton/9780691131269.001.0001.
Bascompte, J., P. Jordano, C. J. Melián, and J. M. Olesen. 2003. The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences 100:9383. https://doi.org/10.1073/pnas.1633576100.
Bascompte, J., P. Jordano, and J. M. Olesen. 2006. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431-433. https://doi.org/10.1126/science.1123412.
Bascompte, J., and D. B. Stouffer. 2009. The assembly and disassembly of ecological networks. Philosophical Transactions of the Royal Society B: Biological Sciences 364:1781-1787. https://doi.org/10.1098/rstb.2008.0226.
Baskerville, E. B., A. P. Dobson, T. Bedford, S. Allesina, T. M. Anderson, and M. Pascual. 2011. Spatial guilds in the serengeti food web revealed by a Bayesian group model. PLoS Computational Biology 7:e1002321. https://doi.org/10.1371/journal.pcbi.1002321.
Bell, J. R., R. Andrew King, D. A. Bohan, and W. O. C. Symondson. 2010. Spatial co-occurrence networks predict the feeding histories of polyphagous arthropod predators at field scales. Ecography 33:64-72. https://doi.org/10.1111/j.1600-0587.2009.06046.x.
Benadi, G., C. Dormann, J. Fründ, R. Stephan, and D. P. Vázquez. 2021. Quantitative prediction of interactions in bipartite networks based on traits, abundances, and phylogeny. The American Naturalist, in press. https://doi.org/10.1086/714420.
Benedek, Z., F. Jordán, and A. Báldi. 2007. Topological keystone species complexes in ecological interaction networks. Community Ecology 8:1-7. https://doi.org/10.1556/ComEc.8.2007.1.1.
Berlow, E. L., S. A. Navarrete, C. J. Briggs, M. E. Power, and B. A. Menge. 1999. Quantifying variation in the strengths of species interactions. Ecology 80:2206-2224. https://doi.org/10.1890/0012-9658(1999)080[2206:QVITSO]2.0.CO;2.
Berlow, E. L., A.-M. Neutel, J. E. Cohen, P. C. D. Ruiter, B. Ebenman, M. Emmerson, J. W. Fox, V. A. A. Jansen, J. I. Jones, G. D. Kokkoris, D. O. Logofet, A. J. McKane, J. M. Montoya, and O. Petchey. 2004. Interaction strengths in food webs: issues and opportunities. Journal of Animal Ecology 73:585-598. https://doi.org/10.1111/j.0021-8790.2004.00833.x.
Bersier, L.-F., C. Banašek-Richter, and M.-F. Cattin. 2002. Quantitative descriptors of food-web matrices. Ecology 83:2394-2407. https://doi.org/10.1890/0012-9658(2002)083[2394:QDOFWM]2.0.CO;2.
Bersier, L.-F., and P. Kehrli. 2008. The signature of phylogenetic constraints on food-web structure. Ecological Complexity 5:132-139. https://doi.org/10.1016/j.ecocom.2007.06.013.
Bezerra, E. L. S., I. C. Machado, and M. A. R. Mello. 2009. Pollination networks of oil-flowers: A tiny world within the smallest of all worlds. Journal of Animal Ecology 78:1096-1101. https://doi.org/10.1111/j.1365-2656.2009.01567.x.
Blackburn, T. M., P. Pyšek, S. Bacher, J. T. Carlton, R. P. Duncan, V. Jarošík, J. R. U. Wilson, and D. M. Richardson. 2011. A proposed unified framework for biological invasions. Trends in Ecology and Evolution 26:333-339. https://doi.org/10.1016/j.tree.2011.03.023.
Blanco-Torres, A., M. A. Bonilla, and L. Cagnolo. 2020. Habitat modification effects on anuran food webs in the Colombian tropical dry forest. Food Webs 22:e00133. https://doi.org/10.1016/j.fooweb.2019.e00133.
Blüthgen, N., J. Fründ, D. P. Vázquez, and F. Menzel. 2008. What do interaction network metrics tell us about specialization and biological traits? Ecology 89:3387-3399. https://doi.org/10.1890/07-2121.1.
Borrelli, J. J., S. Allesina, P. Amarasekare, R. Arditi, I. Chase, J. Damuth, R. D. Holt, D. O. Logofet, M. Novak, R. P. Rohr, A. G. Rossberg, M. Spencer, J. K. Tran, and L. R. Ginzburg. 2015. Selection on stability across ecological scales. Trends in Ecology and Evolution 30:417-425. https://doi.org/10.1016/j.tree.2015.05.001.
Bosch, J., A. M. Martín González, A. Rodrigo, and D. Navarro. 2009. Plant-pollinator networks: adding the pollinator’s perspective. Ecology Letters 12:409-419. https://doi.org/10.1111/j.1461-0248.2009.01296.x.
Bramon Mora, B., E. Shin, P. J. CaraDonna, and D. B. Stouffer. 2020. Untangling the seasonal dynamics of plant-pollinator communities. Nature Communications 11:4086. https://doi.org/10.1038/s41467-020-17894-y.
Brodie, J. F., C. E. Aslan, H. S. Rogers, K. H. Redford, J. L. Maron, J. L. Bronstein, and C. R. Groves. 2014. Secondary extinctions of biodiversity. Trends in Ecology and Evolution 29:664-672. https://doi.org/10.1016/j.tree.2014.09.012.
Brondizio, E. S., J. Settele, S. Díaz, and H. T. Ngo. 2019. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES secretariat, Bonn, Germany.
Brousseau, P.-M., D. Gravel, and I. T. Handa. 2018. Trait matching and phylogeny as predictors of predator-prey interactions involving ground beetles. Functional Ecology 32:192-202. https://doi.org/10.1111/1365-2435.12943.
Burin, G., P. R. Guimarães, and T. B. Quental. 2021. Macroevolutionary stability predicts interaction patterns of species in seed dispersal networks. Science 372:733-737. https://doi.org/10.1126/science.abf0556.
Burkle, L. A., and R. Alarcón. 2011. The future of plant-pollinator diversity: Understanding interaction networks across time, space, and global change. American Journal of Botany 98:528-538. https://doi.org/10.3732/ajb.1000391.
Cagnolo, L., A. Salvo, and G. Valladares. 2011. Network topology: patterns and mechanisms in plant-herbivore and host-parasitoid food webs. Journal of Animal Ecology 80:342-51. https://doi.org/10.1111/j.1365-2656.2010.01778.x.
Cagnolo, L. 2018. The future of ecological networks in the tropics. Pp. 171-183 in W. Dáttilo and V. Rico-Gray (eds.). Ecological networks in the tropics: An Integrative Overview of Species Interactions from Some of the Most Species-Rich Habitats on Earth. Springer.
Calvetti, D., A. P. Hoover, J. Rose, and E. Somersalo. 2020. Metapopulation network models for understanding, predicting, and managing the coronavirus disease COVID-19. Frontiers in Physics 8:261. https://doi.org/10.3389/fphy.2020.00261.
Canard, E. F., N. Mouquet, D. Mouillot, M. Stanko, D. Miklisova, and D. Gravel. 2014. Empirical evaluation of neutral interactions in host-parasite networks. The American Naturalist 183:468-479.
Canard, E., N. Mouquet, L. Marescot, K. J. Gaston, D. Gravel, and D. Mouillot. 2012. Emergence of structural patterns in neutral trophic networks. PLoS ONE 7:e38295. https://doi.org/10.1371/journal.pone.0038295.
CaraDonna, P. J., L. A. Burkle, B. Schwarz, J. Resasco, T. M. Knight, G. Benadi, N. Blüthgen, C. F. Dormann, Q. Fang, J. Fründ, B. Gauzens, C. N. Kaiser-Bunbury, R. Winfree, and D. P. Vázquez. 2021. Seeing through the static: the temporal dimension of plant-animal mutualistic interactions. Ecology Letters 24:149-161. https://doi.org/10.1111/ele.13623.
CaraDonna, P. J., W. K. Petry, R. M. Brennan, J. L. Cunningham, J. L. Bronstein, N. M. Waser, and N. J. Sanders. 2017. Interaction rewiring and the rapid turnover of plant-pollinator networks. Ecology Letters 20:385-394. https://doi.org/10.1111/ele.12740.
CaraDonna, P. J., and N. M. Waser. 2020. Temporal flexibility in the structure of plant-pollinator interaction networks. Oikos 129:1369-1380. https://doi.org/10.1111/oik.07526.
Carvalheiro, L. G., J. C. Biesmeijer, G. Benadi, J. Fründ, M. Stang, I. Bartomeus, C. N. Kaiser-Bunbury, M. Baude, S. I. F. Gomes, V. Merckx, K. C. R. Baldock, A. T. D. Bennett, R. Boada, R. Bommarco, R. Cartar, N. Chacoff, J. Dänhardt, L. V. Dicks, C. F. Dormann, J. Ekroos, K. S. E. Henson, A. Holzschuh, R. R. Junker, M. Lopezaraiza-Mikel, J. Memmott, A. Montero-Castaño, I. L. Nelson, T. Petanidou, E. F. Power, M. Rundlöf, H. G. Smith, J. C. Stout, K. Temitope, T. Tscharntke, T. Tscheulin, M. Vilà, and W. E. Kunin. 2014. The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecology Letters 17:1389-1399. https://doi.org/10.1111/ele.12342.
Carvalheiro, L. G., Y. M. Buckley, R. Ventim, S. V. Fowler, and J. Memmott. 2008. Apparent competition can compromise the safety of highly specific biocontrol agents. Ecology Letters 11:690-700. https://doi.org/10.1111/j.1461-0248.2008.01184.x.
Chacoff, N. P., J. Resasco, and D. P. Vázquez. 2018. Interaction frequency, network position, and the temporal persistence of interactions in a plant-pollinator network. Ecology 99:21-28. https://doi.org/10.1002/ecy.2063.
Chacoff, N. P., D. P. Vázquez, S. B. Lomáscolo, E. L. Stevani, J. Dorado, and B. Padrón. 2012. Evaluating sampling completeness in a desert plant-pollinator network. Journal of Animal Ecology 81:190-200. https://doi.org/10.1111/j.1365-2656.2011.01883.x.
Chagnon, P.-L., R. L. Bradley, and J. N. Klironomos. 2012. Using ecological network theory to evaluate the causes and consequences of arbuscular mycorrhizal community structure. New Phytologist 194:307-312. https://doi.org/10.1111/j.1469-8137.2011.04044.x.
Chesson, P. 2018. Updates on mechanisms of maintenance of species diversity. Journal of Ecology 106:1773-1794. https://doi.org/10.1111/1365-2745.13035.
Cirtwill, A. R., G. V. Dalla Riva, M. P. Gaiarsa, M. D. Bimler, E. F. Cagua, C. Coux, and D. M. Dehling. 2018. A review of species role concepts in food webs. Food Webs 16:e00093. https://doi.org/10.1016/j.fooweb.2018.e00093.
Cohen, J. E. 1977. Food webs and the dimensionality of trophic niche space. Proceedings of the National Academy of Sciences 74:4533-4536. https://doi.org/10.1073/pnas.74.10.4533.
Cohen, J. E. 1978. Food Webs and Niche Space. Princeton University Press, Princeton, New Jersey.
Cohen, J. E., D. N. Schittler, D. G. Raffaelli, and D. C. Reuman. 2009. Food webs are more than the sum of their tritrophic parts. Proceedings of the National Academy of Sciences 106:22335-22340. https://doi.org/10.1073/pnas.0910582106.
Costa, J. M., J. A. Ramos, L. P. da Silva, S. Timóteo, P. Andrade, P. M. Araújo, C. Carneiro, E. Correia, P. Cortez, M. Felgueiras, C. Godinho, R. J. Lopes, C. Matos, A. C. Norte, P. F. Pereira, A. Rosa, and R. H. Heleno. 2018. Rewiring of experimentally disturbed seed dispersal networks might lead to unexpected network configurations. Basic and Applied Ecology 30:11-22. https://doi.org/10.1016/j.baae.2018.05.011.
Coux, C., I. Donoso, J. M. Tylianakis, D. García, D. Martínez, D. M. Dehling, and D. B. Stouffer. 2021. Tricky partners: native plants show stronger interaction preferences than their exotic counterparts. Ecology 102:e03239. https://doi.org/10.1002/ecy.3239.
Coux, C., R. Rader, I. Bartomeus, and J. M. Tylianakis. 2016. Linking species functional roles to their network roles. Ecology Letters 19:762-770. https://doi.org/10.1111/ele.12612.
Crea, C., R. A. Ali, and R. Rader. 2016. A new model for ecological networks using species-level traits. Methods in Ecology and Evolution 7:232-241. https://doi.org/10.1111/2041-210X.12471.
Dallas, T., and T. Poisot. 2018. Compositional turnover in host and parasite communities does not change network structure. Ecography 41:1534-1542. https://doi.org/10.1111/ecog.03514.
Dalsgaard, B., K. Trøjelsgaard, A. M. M. González, D. Nogués-Bravo, J. Ollerton, T. Petanidou, B. Sandel, M. Schleuning, Z. Wang, C. Rahbek, W. J. Sutherland, J.-C. Svenning, and J. M. Olesen. 2013. Historical climate-change influences modularity and nestedness of pollination networks. Ecography 36:1331-1340. https://doi.org/10.1111/j.1600-0587.2013.00201.x.
Darwin, C. 1859. The Origin of Species by Means of Natural Selection, or the Preservation of Favored Races in the Struggle for Life. John Murray, London, UK. https://doi.org/10.5962/bhl.title.39967.
Dáttilo, W., N. Lara-Rodríguez, P. Jordano, P. R. Guimarães, J. N. Thompson, R. J. Marquis, L. P. Medeiros, R. Ortiz-Pulido, M. A. Marcos-García, and V. Rico-Gray. 2016. Unravelling Darwin’s entangled bank: architecture and robustness of mutualistic networks with multiple interaction types. Proceedings of the Royal Society B: Biological Sciences 283:20161564. https://doi.org/10.1098/rspb.2016.1564.
Dáttilo, W., and V. Rico-Gray. 2018. Ecological Networks in the Tropics: An Integrative Overview of Species Interactions from Some of the Most Species-Rich Habitats on Earth. Springer. https://doi.org/10.1007/978-3-319-68228-0.
Dáttilo, W., J. Vizentin-Bugoni, V. J. Debastiani, P. Jordano, and T. J. Izzo. 2019. The influence of spatial sampling scales on ant-plant interaction network architecture. Journal of Animal Ecology 88(6):903-914. https://doi.org/10.1111/1365-2656.12978.
Dehling, D. M., G. Peralta, I. M. A. Bender, P. G. Blendinger, K. Böhning-Gaese, M. C. Muñoz, E. L. Neuschulz, M. Quitián, F. Saavedra, V. Santillán, M. Schleuning, and D. B. Stouffer. 2020. Similar composition of functional roles in Andean seed-dispersal networks, despite high species and interaction turnover. Ecology 101:e03028. https://doi.org/10.1002/ecy.3028.
Delmas, E., M. Besson, M.-H. Brice, L. A. Burkle, G. V. Dalla Riva, M.-J. Fortin, D. Gravel, P. R. Guimarães Jr., D. H. Hembry, E. A. Newman, J. M. Olesen, M. M. Pires, J. D. Yeakel, and T. Poisot. 2019. Analysing ecological networks of species interactions Biological Reviews 94:16-36. https://doi.org/10.1111/brv.12433.
Desjardins-Proulx, P., I. Laigle, T. Poisot, and D. Gravel. 2017. Ecological interactions and the Netflix problem. PeerJ 5:e3644. https://doi.org/10.7717/peerj.3644.
Devoto, M., S. Bailey, and J. Memmott. 2011. The ‘night shift’: nocturnal pollen-transport networks in a boreal pine forest. Ecological Entomology 36:25-35. https://doi.org/10.1111/j.1365-2311.2010.01247.x.
Devoto, M., M. Zimmermann, and D. Medan. 2007. Robustness of plant-flower visitor webs to simulated climate change. Ecología Austral 17:037-050.
Dicks, L. V., S. A. Corbet, and R. F. Pywell. 2002. Compartmentalization in plant-insect flower visitor webs. Journal of Animal Ecology 71:32-43. https://doi.org/10.1046/j.0021-8790.2001.00572.x.
Donoso, I., C. Stefanescu, A. Martínez-Abraín, and A. Traveset. 2016. Phenological asynchrony in plant-butterfly interactions associated with climate: a community-wide perspective. Oikos 125:1434-1444. https://doi.org/10.1111/oik.03053.
Donoso, I., M. C. Sorensen, P. G. Blendinger, W. D. Kissling, E. L. Neuschulz, T. Mueller, and M. Schleuning. 2020. Downsizing of animal communities triggers stronger functional than structural decay in seed-dispersal networks. Nature Communications 11:1-8. https://doi.org/10.1038/s41467-020-15438-y.
Dorado, J., D. P. Vázquez, E. L. Stevani, and N. P. Chacoff. 2011. Rareness and specialization in plant-pollinator networks. Ecology 92:19-25. https://doi.org/10.1890/10-0794.1.
Dormann, C. F., J. Fründ, N. Blüthgen, and B. Gruber. 2009. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecology Journal 2:7-24. https://doi.org/10.2174/1874213000902010007.
Dormann, C. F., J. Fründ, and H. M. Schaefer. 2017. Identifying causes of patterns in ecological networks: opportunities and limitations. Annual Review of Ecology, Evolution, and Systematics 48:559-584. https://doi.org/10.1146/annurev-ecolsys-110316-022928.
Dunne, J. A., R. J. Williams, and N. D. Martínez. 2002. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecology Letters 5:558-567. https://doi.org/10.1046/j.1461-0248.2002.00354.x.
Dupont, Y. L., K. Trøjelsgaard, M. Hagen, M. V. Henriksen, J. M. Olesen, N. M. E. Pedersen, and W. D. Kissling. 2014. Spatial structure of an individual-based plant-pollinator network. Oikos 123:1301-1310. https://doi.org/10.1111/oik.01426.
Durant, J., D. Hjermann, G. Ottersen, and N. Stenseth. 2007. Climate and the match or mismatch between predator requirements and resource availability. Climate Research 33:271-283. https://doi.org/10.3354/cr033271.
Elizalde, L., R. J. W. Patrock, R. H. L. Disney, and P. J. Folgarait. 2018. Spatial and temporal variation in host-parasitoid interactions: leafcutter ant hosts and their phorid parasitoids. Ecological Entomology 43:114-125. https://doi.org/10.1111/een.12477.
Elton, C. 1927. Animal Ecology. Sidgwick and Jackson, London, UK.
Emer, C., J. Memmott, I. P. Vaughan, D. Montoya, and J. M. Tylianakis. 2016. Species roles in plant-pollinator communities are conserved across native and alien ranges. Diversity and Distributions 22:841-852. https://doi.org/10.1111/ddi.12458.
Emer, C., M. Galetti, M. A. Pizo, P. R. Guimarães, S. Moraes, A. Piratelli, and P. Jordano. 2018. Seed-dispersal interactions in fragmented landscapes - A metanetwork approach. Ecology Letters 21:484-493. https://doi.org/10.1111/ele.12909.
Estrada, E. 2007. Characterization of topological keystone species. Ecological Complexity 4:48-57. https://doi.org/10.1016/j.ecocom.2007.02.018.
Evans, D. M., and J. J. N. Kitson. 2020. Molecular ecology as a tool for understanding pollination and other plant-insect interactions. Current Opinion in Insect Science 38:26-33. https://doi.org/10.1016/j.cois.2020.01.005.
Evans, D. M., J. J. N. Kitson, D. H. Lunt, N. A. Straw, and M. J. O. Pocock. 2016. Merging DNA metabarcoding and ecological network analysis to understand and build resilient terrestrial ecosystems. Functional Ecology 30:1904-1916. https://doi.org/10.1111/1365-2435.12659.
Evans, D. M., M. J. O. Pocock, and J. Memmott. 2013. The robustness of a network of ecological networks to habitat loss. Ecology Letters 16:844-852. https://doi.org/10.1111/ele.12117.
Fahrig, L., V. Arroyo-Rodríguez, J. R. Bennett, V. Boucher-Lalonde, E. Cazetta, D. J. Currie, F. Eigenbrod, A. T. Ford, S. P. Harrison, J. A. G. Jaeger, N. Koper, A. E. Martin, J.-L. Martin, J. P. Metzger, P. Morrison, J. R. Rhodes, D. A. Saunders, D. Simberloff, A. C. Smith, L. Tischendorf, M. Vellend, and J. I. Watling. 2019. Is habitat fragmentation bad for biodiversity? Biological Conservation 230:179-186. https://doi.org/10.1016/j.biocon.2018.12.026.
Falcão, J. C. F., W. Dáttilo, and V. Rico-Gray. 2016. Sampling effort differences can lead to biased conclusions on the architecture of ant-plant interaction networks. Ecological Complexity 25:44-52. https://doi.org/10.1016/j.ecocom.2016.01.001.
Fang, Q., and S.-Q. Huang. 2012. Relative stability of core groups in pollination networks in a biodiversity hotspot over four years. PLoS ONE 7:e32663. https://doi.org/10.1371/journal.pone.0032663.
Figueroa, L. L., H. Grab, W. H. Ng, C. R. Myers, P. Graystock, Q. S. McFrederick, and S. H. McArt. 2020. Landscape simplification shapes pathogen prevalence in plant-pollinator networks. Ecology Letters 23:1212-1222. https://doi.org/10.1111/ele.13521.
Flores‐Moreno, H., F. Fazayeli, A. Banerjee, A. Datta, J. Kattge, E. E. Butler, O. K. Atkin, K. Wythers, M. Chen, M. Anand, M. Bahn, C. Byun, J. H. C. Cornelissen, J. Craine, A. González‐Melo, W. N. Hattingh, S. Jansen, N. J. B. Kraft, K. Kramer, D. C. Laughlin, V. Minden, Ü. Niinemets, V. Onipchenko, J. Peñuelas, N. A. Soudzilovskaia, R. L. Dalrymple, and P. B. Reich. 2019. Robustness of trait connections across environmental gradients and growth forms. Global Ecology and Biogeography 28:1806-1826. https://doi.org/10.1111/geb.12996.
Foley, J. A., R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, M. T. Coe, G. C. Daily, H. K. Gibbs, J. H. Helkowski, T. Holloway, E. A. Howard, C. J. Kucharik, C. Monfreda, J. A. Patz, I. C. Prentice, N. Ramankutty, and P. K. Snyder. 2005. Global consequences of land use. Science 309:570-574. https://doi.org/10.1126/science.1111772.
Fort, H., D. P. Vázquez, and B. L. Lan. 2016. Abundance and generalisation in mutualistic networks: solving the chicken-and-egg dilemma. Ecology Letters 19:4-11. https://doi.org/10.1111/ele.12535.
Fortuna, M. A., and J. Bascompte. 2006. Habitat loss and the structure of plant-animal mutualistic networks. Ecology Letters 9:281-286. https://doi.org/10.1111/j.1461-0248.2005.00868.x.
Frank van Veen, F. J., R. J. Morris, and H. C. J. Godfray. 2006. Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annual Review of Entomology 51:187-208. https://doi.org/10.1146/annurev.ento.51.110104.151120.
Fricke, E. C., and J.-C. Svenning. 2020. Accelerating homogenization of the global plant-frugivore meta-network. Nature 585:74-78. https://doi.org/10.1038/s41586-020-2640-y.
Frost, C. M., W. J. Allen, F. Courchamp, J. M. Jeschke, W.-C. Saul, and D. A. Wardle. 2019. Using network theory to understand and predict biological invasions. Trends in Ecology and Evolution 34:831-843. https://doi.org/10.1016/j.tree.2019.04.012.
Frost, C. M., G. Peralta, T. A. Rand, R. K. Didham, A. Varsani, and J. M. Tylianakis. 2016. Apparent competition drives community-wide parasitism rates and changes in host abundance across ecosystem boundaries. Nature Communications 7:12644. https://doi.org/10.1038/ncomms12644.
Fründ, J., K. S. McCann, and N. M. Williams. 2016. Sampling bias is a challenge for quantifying specialization and network structure: lessons from a quantitative niche model. Oikos 125:502-513. https://doi.org/10.1111/oik.02256.
García, D., D. Martínez, D. B. Stouffer, and J. M. Tylianakis. 2014. Exotic birds increase generalization and compensate for native bird decline in plant-frugivore assemblages. Journal of Animal Ecology 83:1441-1450. https://doi.org/10.1111/1365-2656.12237.
Garibaldi, L. A., I. Bartomeus, R. Bommarco, A. M. Klein, S. A. Cunningham, M. A. Aizen, V. Boreux, M. P. D. Garratt, L. G. Carvalheiro, C. Kremen, C. L. Morales, C. Schüepp, N. P. Chacoff, B. M. Freitas, V. Gagic, A. Holzschuh, B. K. Klatt, K. M. Krewenka, S. Krishnan, M. M. Mayfield, I. Motzke, M. Otieno, J. Petersen, S. G. Potts, T. H. Ricketts, M. Rundlöf, A. Sciligo, P. A. Sinu, I. Steffan-Dewenter, H. Taki, T. Tscharntke, C. H. Vergara, B. F. Viana, and M. Woyciechowski. 2015. Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology 52:1436-1444. https://doi.org/10.1111/1365-2664.12530.
Giannini, T. C., L. A. Garibaldi, A. L. Acosta, J. S. Silva, K. P. Maia, A. M. Saraiva, P. R. Guimarães Jr., and A. M. Kleinert. 2015. Native and non-native supergeneralist bee species have different effects on plant-bee networks. PLoS ONE 10:e0137198. https://doi.org/10.1371/journal.pone.0137198.
Gibson, R. H., B. Knott, T. Eberlein, and J. Memmott. 2011. Sampling method influences the structure of plant-pollinator networks. Oikos 120:822-831. https://doi.org/10.1111/j.1600-0706.2010.18927.x.
Gilarranz, L. J., B. Rayfield, G. Liñán-Cembrano, J. Bascompte, and A. González. 2017. Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357:199-201. https://doi.org/10.1126/science.aal4122.
Goldwasser, L., and J. Roughgarden. 1997. Sampling effects and the estimation of food-web properties. Ecology 78:41-54. https://doi.org/10.1890/0012-9658(1997)078[0041:SEATEO]2.0.CO;2.
González, A. 1998. Metapopulation dynamics, abundance, and distribution in a microecosystem. Science 281:2045-2047. https://doi.org/10.1126/science.281.5385.2045.
González-Castro, A., M. Calviño-Cancela, and M. Nogales. 2015. Comparing seed dispersal effectiveness by frugivores at the community level. Ecology 96:808-818. https://doi.org/10.1890/14-0655.1.
González-Varo, J. P., and A. Traveset. 2016. The labile limits of forbidden interactions. Trends in Ecology and Evolution 31:700-710. https://doi.org/10.1016/j.tree.2016.06.009.
Gotelli, N. J., and G. R. Graves. 1996. Null Models in Ecology. Smithsonian Institution Press.
Gravel, D., B. Baiser, J. A. Dunne, J.-P. Kopelke, N. D. Martínez, T. Nyman, T. Poisot, D. B. Stouffer, J. M. Tylianakis, S. A. Wood, and T. Roslin. 2019. Bringing Elton and Grinnell together: a quantitative framework to represent the biogeography of ecological interaction networks. Ecography 42:401-415. https://doi.org/10.1111/ecog.04006.
Grilli, J., T. Rogers, T., and S. Allesina. 2016. Modularity and stability in ecological communities. Nature Communications 7:1-10. https://doi.org/10.1016/j.tree.2016.06.009.
Gu, H., E. Goodale, and J. Chen. 2015. Emerging directions in the study of the ecology and evolution of plant-animal mutualistic networks: a review. Zoological Research 36:65-71.
Guimarães Jr., P. R. 2020. The structure of ecological networks across levels of organization. Annual Review of Ecology, Evolution, and Systematics 51:433-460. https://doi.org/10.1146/annurev-ecolsys-012220-120819.
Guimarães Jr., P. R., M. M. Pires, P. Jordano, J. Bascompte, and J. N. Thompson. 2017. Indirect effects drive coevolution in mutualistic networks. Nature 550:511-514. https://doi.org/10.1038/nature24273.
Guimerà, R., and L. A. N. Amaral. 2005. Cartography of complex networks: modules and universal roles. Journal of Statistical Mechanics: Theory and Experiment 2005:P02001. https://doi.org/10.1088/1742-5468/2005/02/P02001.
Hackett, T. D., A. M. C. Sauve, N. Davies, D. Montoya, J. M. Tylianakis, and J. Memmott. 2019. Reshaping our understanding of species’ roles in landscape-scale networks. Ecology Letters 22:1367-1377. https://doi.org/10.1111/ele.13292.
Hagen, M., W. D. Kissling, C. Rasmussen, M. A. M. De Aguiar, L. E. Brown, D. W. Carstensen, I. Alves-Dos-Santos, Y. L. Dupont, F. K. Edwards, J. Genini, and others. 2012. Biodiversity, species interactions and ecological networks in a fragmented world. Advances in Ecological Research 46:89-210. https://doi.org/10.1016/B978-0-12-396992-7.00002-2.
Hairston, N., F. Smith, and L. Slobodkin. 1960. Community structure, population control and competition. American Naturalist 94:421-425. https://doi.org/10.1086/282146.
Han, S. K., I. Kim, J. Hwang, and S. Kim. 2015. Network modules of the cross-species genotype-phenotype map reflect the clinical severity of human diseases. PLoS ONE 10:e0136300. https://doi.org/10.1371/journal.pone.0136300.
Hanski, I. 1999. Metapopulation Ecology. Oxford University Press, Oxford. New York.
Harvey, E., I. Gounand, C. L. Ward, and F. Altermatt. 2017. Bridging ecology and conservation: from ecological networks to ecosystem function. Journal of Applied Ecology 54:371-379. https://doi.org/10.1111/1365-2664.12769.
He, N., Y. Li, C. Liu, L. Xu, M. Li, J. Zhang, J. He, Z. Tang, X. Han, Q. Ye, C. Xiao, Q. Yu, S. Liu, W. Sun, S. Niu, S. Li, L. Sack, and G. Yu. 2020. Plant trait networks: improved resolution of the dimensionality of adaptation. Trends in Ecology and Evolution 35:908-918. https://doi.org/10.1016/j.tree.2020.06.003.
Hegland, S. J., A. Nielsen, A. Lázaro, A.-L. Bjerknes, and Ø. Totland. 2009. How does climate warming affect plant-pollinator interactions? Ecology Letters 12:184-195. https://doi.org/10.1111/j.1461-0248.2008.01269.x.
Heino, J., H. Mykrä, and T. Muotka. 2009. Temporal variability of nestedness and idiosyncratic species in stream insect assemblages. Diversity and Distributions 15:198-206. https://doi.org/10.1111/j.1472-4642.2008.00513.x.
Heleno, R. H., J. M. Olesen, M. Nogales, P. Vargas, and A. Traveset. 2013. Seed dispersal networks in the Galápagos and the consequences of alien plant invasions. Proceedings of the Royal Society B: Biological Sciences 280:20122112. https://doi.org/10.1111/j.1472-4642.2008.00513.x.
Hemprich-Bennett, D. R., H. F. M. Oliveira, S. C. L. Comber, S. J. Rossiter, and E. L. Clare. 2021. Assessing the impact of taxon resolution on network structure. Ecology 102:e03256. https://doi.org/10.1002/ecy.3256.
Henriksen, M. V., D. G. Chapple, S. L. Chown, and M. A. McGeoch. 2019. The effect of network size and sampling completeness in depauperate networks. Journal of Animal Ecology 88:211-222. https://doi.org/10.1111/1365-2656.12912.
Holt, R. D. 1977. Predation, apparent competition, and the structure of prey communities. Theoretical Population Biology 12:197-229. https://doi.org/10.1016/0040-5809(77)90042-9.
Holt, R. D., and M. B. Bonsall. 2017. Apparent competition. Annual Review of Ecology, Evolution, and Systematics 48:447-471. https://doi.org/10.1146/annurev-ecolsys-110316-022628.
Huey, R. B., M. R. Kearney, A. Krockenberger, J. A. M. Holtum, M. Jess, and S. E. Williams. 2012. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences 367:1665-1679. https://doi.org/10.1098/rstb.2012.0005.
Hui, C., D. M. Richardson, P. Landi, H. O. Minoarivelo, J. Garnas, and H. E. Roy. 2016. Defining invasiveness and invasibility in ecological networks. Biological Invasions 18:971-983. https://doi.org/10.1007/s10530-016-1076-7.
Ings, T. C., and J. E. Hawes. 2018. The history of ecological networks. Pp. 15-28 in W. Dáttilo and V. Rico-Gray (eds.). Ecological networks in the tropics: An Integrative Overview of Species Interactions from Some of the Most Species-Rich Habitats on Earth. Springer.
Ings, T. C., J. M. Montoya, J. Bascompte, N. Blüthgen, L. Brown, C. F. Dormann, F. Edwards, D. Figueroa, U. Jacob, J. I. Jones, R. B. Lauridsen, M. E. Ledger, H. M. Lewis, J. M. Olesen, F. J. F. Van Veen, P. H. Warren, and G. Woodward. 2009. Ecological networks - beyond food webs. Journal of Animal Ecology 78:253-269. https://doi.org/10.1111/j.1365-2656.2008.01460.x.
Ives, A. R., and H. C. J. Godfray. 2006. Phylogenetic analysis of trophic associations. American Naturalist 168:E1-14. https://doi.org/10.1086/505157.
Jordán, F., Z. Benedek, and J. Podani. 2007. Quantifying positional importance in food webs: A comparison of centrality indices. Ecological Modelling 205:270-275. https://doi.org/10.1016/j.ecolmodel.2007.02.032.
Jordán, F., W. Liu, A. J. Davis, and J. Memmott. 2006. Topological keystone species: measures of positional importance in food webs. Oikos 112:535-546. https://doi.org/10.1111/j.0030-1299.2006.13724.x.
Jordano, P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. American Naturalist 129:657-677. https://doi.org/10.1086/284665.
Jordano, P. 2016. Sampling networks of ecological interactions. Functional Ecology 30:1883-1893.
Jordano, P., J. Bascompte, and J. M. Olesen. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. Ecology Letters 6:69-81. https://doi.org/10.1046/j.1461-0248.2003.00403.x.
Kaartinen, R., and T. Roslin. 2011. Shrinking by numbers: landscape context affects the species composition but not the quantitative structure of local food webs. Journal of Animal Ecology 80:622-631. https://doi.org/10.1111/j.1365-2656.2011.01811.x.
Kaartinen, R., G. N. Stone, J. Hearn, K. Lohse, and T. Roslin. 2010. Revealing secret liaisons: DNA barcoding changes our understanding of food webs. Ecological Entomology 35:623-638. https://doi.org/10.1111/j.1365-2311.2010.01224.x.
Kaiser-Bunbury, C. N., and N. Blüthgen. 2015 Integrating network ecology with applied conservation: a synthesis and guide to implementation. AoB Plants 7:plv076. https://doi.org/10.1093/aobpla/plv076.
Kaiser-Bunbury, C. N., S. Muff, J. Memmott, C. B. Müller, and A. Caflisch. 2010. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecology Letters 13:442-452. https://doi.org/10.1111/j.1461-0248.2009.01437.x.
Kawatsu, K., M. Ushio, F. J. F. van Veen, and M. Kondoh. 2021. Are networks of trophic interactions sufficient for understanding the dynamics of multi-trophic communities? Analysis of a tri-trophic insect food-web time-series. Ecology Letters 24:543-552. https://doi.org/10.1111/ele.13672.
Keane, R. M., and M. J. Crawley. 2002. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology and Evolution 17:164-170. https://doi.org/10.1016/S0169-5347(02)02499-0.
Kearns, C. A., D. W. Inouye, and N. M. Waser. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. Annual Review of Ecology and Systematics 29:83-112. https://doi.org/10.1146/annurev.ecolsys.29.1.83.
Kéfi, S., V. Miele, E. A. Wieters, S. A. Navarrete, and E. L. Berlow. 2016. How structured is the entangled bank? The surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience. PloS Biology 14:e1002527. https://doi.org/10.1371/journal.pbio.1002527.
Keith, A. R., J. K. Bailey, M. K. Lau, and T. G. Whitham. 2017. Genetics-based interactions of foundation species affect community diversity, stability and network structure. Proceedings of the Royal Society B: Biological Sciences 284:20162703. https://doi.org/10.1098/rspb.2016.2703.
Kerby, J. T., C. C. Wilmers, and E. Post. 2012. Climate change, phenology and the nature of consumer-resource interactions: advancing the match/mismatch hypothesis. Pp. 509-525 in T. Ohgushi, O. J. Schmitz and R. D. Holt (eds.). Trait-Mediated Indirect Interactions: Ecological and Evolutionary Perspectives. Cambridge University Press.
Koch, E. B. A., W. Dáttilo, F. Camarota, and H. L. Vasconcelos. 2018. From species to individuals: does the variation in ant-plant networks scale result in structural and functional changes? Population Ecology 60:309-318. https://doi.org/10.1007/s10144-018-0634-5.
Kotula, H. J., G. Peralta, C. M. Frost, J. H. Todd, and J. M. Tylianakis. 2021. Predicting direct and indirect non-target impacts of biocontrol agents using machine-learning approaches. PLoS ONE 16:e0252448. https://doi.org/10.1371/journal.pone.0252448.
Kremen, C., and A. M. Merenlender. 2018. Landscapes that work for biodiversity and people. Science 362. https://doi.org/10.1126/science.aau6020.
Lafferty, K. D., S. Allesina, M. Arim, C. J. Briggs, G. D. Leo, A. P. Dobson, J. A. Dunne, P. T. J. Johnson, A. M. Kuris, D. J. Marcogliese, N. D. Martínez, J. Memmott, P. A. Marquet, J. P. McLaughlin, E. A. Mordecai, M. Pascual, R. Poulin, and D. W. Thieltges. 2008. Parasites in food webs: the ultimate missing links. Ecology Letters 11:533-546. https://doi.org/10.1111/j.1461-0248.2008.01174.x.
Lafferty, K. D., A. P. Dobson, and A. M. Kuris. 2006. Parasites dominate food web links. Proceedings of the National Academy of Sciences 103:11211-11216. https://doi.org/10.1073/pnas.0604755103.
Laska, M. S., and J. T. Wootton. 1998. Theoretical concepts and empirical approaches to measuring interaction strength. Ecology 79:461-476. https://doi.org/10.1073/pnas.0604755103.
Lau, M. K., A. R. Keith, S. R. Borrett, S. M. Shuster, and T. G. Whitham. 2016. Genotypic variation in foundation species generates network structure that may drive community dynamics and evolution. Ecology 97:733-742. https://doi.org/10.1890/15-0600.1.
Lewinsohn, T. M., and L. Cagnolo. 2012. Keystones in a tangled bank. Science 335:1449-1451. https://doi.org/10.1126/science.1220138.
Lewinsohn, T. M., V. Novotny, and Y. Basset. 2005. Insects on plants: diversity of herbivore assemblages revisited. Annual Review of Ecology, Evolution, and Systematics 36:597-620. https://doi.org/10.1146/annurev.ecolsys.36.091704.175520.
Lewinsohn, T. M., P. I. Prado, P. Jordano, J. Bascompte, and J. Olesen. 2006. Structure in plant-animal interaction assemblages. Oikos 113:174-184. https://doi.org/10.1111/j.0030-1299.2006.14583.x.
Lomáscolo S., N. P. Chacoff, N. Giannini, R. Castro-Urgal, and D. P. Vázquez. 2019. Inferring coevolution in a plant-pollinator network. Oikos 128:775-789. https://doi.org/10.1111/oik.05960.
Lurgi, M., N. Galiana, B. C. López, L. N. Joppa, and J. M. Montoya. 2014. Network complexity and species traits mediate the effects of biological invasions on dynamic food webs. Frontiers in Ecology and Evolution 2:36. https://doi.org/10.3389/fevo.2014.00036.
Magrach, A., F. P. Molina, and I. Bartomeus. 2020. Niche complementarity among pollinators increases community-level plant reproductive success. Peer Community Journal 1:e1. https://doi.org/10.24072/pcjournal.1.
Martín González, A. M., B. Dalsgaard, and J. M. Olesen. 2010. Centrality measures and the importance of generalist species in pollination networks. Ecological Complexity 7:36-43. https://doi.org/10.1016/j.ecocom.2009.03.008.
Martínez, N. D. 1991. Artifacts or attributes? Effects of resolution on the little rock lake food web. Ecological Monographs 61:367-392. https://doi.org/10.2307/2937047.
May, R. M. 1973. Stability and complexity in model ecosystems. Princeton University Press, Princeton, New Jersey.
Maynard, D. S., C. A. Serván, and S. Allesina. 2018. Network spandrels reflect ecological assembly. Ecology Letters 21:324-334. https://doi.org/10.1111/ele.12912.
McMeans, B. C., K. S. McCann, M. Humphries, N. Rooney, and A. T. Fisk. 2015. Food web structure in temporally-forced ecosystems. Trends in Ecology and Evolution 30:662-672. https://doi.org/10.1016/j.tree.2015.09.001.
McPeek, M. A. 2019. Mechanisms influencing the coexistence of multiple consumers and multiple resources: resource and apparent competition. Ecological Monographs 89:e01328. https://doi.org/10.1002/ecm.1328.
Mello, M. A. R., E. L. S. Bezerra, and I. C. Machado. 2013. Functional roles of Centridini oil bees and Malpighiaceae oil flowers in biome-wide pollination networks. Biotropica 45:45-53. https://doi.org/10.1111/j.1744-7429.2012.00899.x.
Mello, M. A. R., F. M. D. Marquitti, P. R. G. Jr., E. K. V. Kalko, P. Jordano, and M. A. M. de Aguiar. 2011. The missing part of seed dispersal networks: structure and robustness of bat-fruit interactions. PLoS ONE 6:e17395. https://doi.org/10.1371/journal.pone.0017395.
Memmott, J., P. G. Craze, N. M. Waser, and M. V. Price. 2007. Global warming and the disruption of plant-pollinator interactions. Ecology Letters 10:710-717. https://doi.org/10.1111/j.1461-0248.2007.01061.x.
Memmott, J., N. M. Waser, and M. V. Price. 2004. Tolerance of pollination networks to species extinctions. Proceedings of the Royal Society of London B 271:2605-2611. https://doi.org/10.1098/rspb.2004.2909.
Messier, J., M. J. Lechowicz, B. J. McGill, C. Violle, and B. J. Enquist. 2017. Interspecific integration of trait dimensions at local scales: the plant phenotype as an integrated network. Journal of Ecology 105:1775-1790. https://doi.org/10.1111/1365-2745.12755.
Miele, V., R. Ramos-Jiliberto, and D. P. Vázquez. 2020. Core-periphery dynamics in a plant-pollinator network. Journal of Animal Ecology 89:1670-1677. https://doi.org/10.1111/1365-2656.13217.
Miller-Rushing, A. J., T. T. Høye, D. W. Inouye, and E. Post. 2010. The effects of phenological mismatches on demography. Philosophical Transactions of the Royal Society B: Biological Sciences 365:3177-3186. https://doi.org/10.1098/rstb.2010.0148.
Milo, R. 2002. Network motifs: simple building blocks of complex networks. Science 298:824-827. https://doi.org/10.1126/science.298.5594.824.
Montero‐Castaño, A., and M. Vilà. 2017. Influence of the honeybee and trait similarity on the effect of a non‐native plant on pollination and network rewiring. Functional Ecology 31:142-152. https://doi.org/10.1111/1365-2435.12712.
Montoya, J. M., S. L. Pimm, and R. V. Solè. 2006. Ecological networks and their fragility. Nature 442:259-264. https://doi.org/10.1038/nature04927.
Morán-López, T., W. D. Espíndola, B. S. Vizzachero, A. Fontanella, L. Salinas, C. Arana, G. Amico, M. A. Pizo, T. A. Carlo, and J. M. Morales. 2020. Can network metrics predict vulnerability and species roles in bird-dispersed plant communities? Not without behaviour. Ecology Letters 23:348-358. https://doi.org/10.1111/ele.13439.
Morente-López, J., C. Lara-Romero, C. Ornosa, and J. M. Iriondo. 2018. Phenology drives species interactions and modularity in a plant - flower visitor network. Scientific Reports 8:9386. https://doi.org/10.1038/s41598-018-27725-2.
Morris, R. J., O. T. Lewis, and H. C. J. Godfray. 2004. Experimental evidence for apparent competition in a tropical forest food web. Nature 428:310-313. https://doi.org/10.1038/nature02394.
Morris, W. F., D. P. Vázquez, and N. P. Chacoff. 2010. Benefit and cost curves for typical pollination mutualisms. Ecology 91:1276-1285. https://doi.org/10.1890/08-2278.1.
Newbold, T., L. N. Hudson, S. L. L. Hill, S. Contu, I. Lysenko, R. A. Senior, L. Börger, D. J. Bennett, A. Choimes, B. Collen, J. Day, A. De Palma, S. Díaz, S. Echeverria-Londoño, M. J. Edgar, A. Feldman, M. Garon, M. L. K. Harrison, T. Alhusseini, D. J. Ingram, Y. Itescu, J. Kattge, V. Kemp, L. Kirkpatrick, M. Kleyer, D. L. P. Correia, C. D. Martin, S. Meiri, M. Novosolov, Y. Pan, H. R. P. Phillips, D. W. Purves, A. Robinson, J. Simpson, S. L. Tuck, E. Weiher, H. J. White, R. M. Ewers, G. M. Mace, J. P. W. Scharlemann, and A. Purvis. 2015. Global effects of land use on local terrestrial biodiversity. Nature 520:45-50. https://doi.org/10.1038/nature14324.
Newman, M. E. J. 2003. The structure and function of complex networks. SIAM Review 45:167-256. https://doi.org/10.1137/S003614450342480.
Ng’weno, C. C., S. W. Buskirk, N. J. Georgiadis, B. C. Gituku, A. K. Kibungei, L. M. Porensky, D. I. Rubenstein, and J. R. Goheen. 2019. Apparent competition, lion predation, and managed livestock grazing: can conservation value be enhanced? Frontiers in Ecology and Evolution 7:123. https://doi.org/10.3389/fevo.2019.00123.
Nielsen, A., and J. Bascompte. 2007. Ecological networks, nestedness and sampling effort. Journal of Ecology 95:1134-1141. https://doi.org/10.1111/j.1365-2745.2007.01271.x.
Novak, M., and J. T. Wootton. 2008. Estimating nonlinear interaction strengths: an observation-based method for species-rich food webs. Ecology 89:2083-2089. https://doi.org/10.1890/08-0033.1.
Ohgushi, T. 2005. Indirect interaction webs: herbivore-induced effects through trait change in plants. Annual Review of Ecology, Evolution, and Systematics 36:81-105. https://doi.org/10.1146/annurev.ecolsys.36.091704.175523.
Okuyama, T., and J. N. Holland. 2008. Network structural properties mediate the stability of mutualistic communities. Ecology Letters 11:208-216. https://doi.org/10.1111/j.1461-0248.2007.01137.x.
Olesen, J. M., J. Bascompte, Y. L. Dupont, H. Elberling, C. Rasmussen, and P. Jordano. 2011. Missing and forbidden links in mutualistic networks. Proceedings of the Royal Society B: Biological Sciences 278:725-732. https://doi.org/10.1098/rspb.2010.1371.
Olesen, J. M., J. Bascompte, Y. L. Dupont, and P. Jordano. 2007. The modularity of pollination networks. Proceedings of the National Academy of Sciences 104:19891-19896. https://doi.org/10.1073/pnas.0706375104.
Olesen, J. M., J. Bascompte, H. Elberling, and P. Jordano. 2008. Temporal dynamics in a pollination network. Ecology 89:1573-1582. https://doi.org/10.1890/07-0451.1.
Olito, C., and J. W. Fox. 2015. Species traits and abundances predict metrics of plant-pollinator network structure, but not pairwise interactions. Oikos 124:428-436. https://doi.org/10.1111/oik.01439.
Paine, R. T. 1966. Food web complexity and species diversity. The American Naturalist 100:65-75. https://doi.org/10.1086/282400.
Paine, R. T. 1980. Food webs: linkage, interaction strength and community infrastructure. The Journal of Animal Ecology 49:666. https://doi.org/10.2307/4220.
Pascual, M., and J. A. Dunne. 2005. Ecological Networks: Linking Structure to Dynamics in Food Webs. Oxford University Press.
Pearse, I. S., and F. Altermatt. 2013. Predicting novel trophic interactions in a non-native world. Ecology Letters 16:1088-1094. https://doi.org/10.1111/ele.12143.
Peralta, G. 2016. Merging evolutionary history into species interaction networks. Functional Ecology 30:1917-1925. https://doi.org/10.1111/ele.12143.
Peralta, G., C. M. Frost, R. K. Didham, T. A. Rand, and J. M. Tylianakis. 2017. Non-random food-web assembly at habitat edges increases connectivity and functional redundancy. Ecology 98:995-1005. https://doi.org/10.1002/ecy.1656.
Peralta, G., C. M. Frost, T. A. Rand, R. K. Didham, and J. M. Tylianakis. 2014. Complementarity and redundancy of interactions enhance attack rates and spatial stability in host-parasitoid food webs. Ecology 95:1888-1896. https://doi.org/10.1890/13-1569.1.
Peralta, G., G. L. W. Perry, D. P. Vázquez, D. M. Dehling, and J. M. Tylianakis. 2020a. Strength of niche processes for species interactions is lower for generalists and exotic species. Journal of Animal Ecology 89:2145-2155. https://doi.org/10.1111/1365-2656.13274.
Peralta, G., D. B. Stouffer, E. M. Bringa, and D. P. Vázquez. 2020b. No such thing as a free lunch: interaction costs and the structure and stability of mutualistic networks. Oikos 129:503-511. https://doi.org/10.1111/oik.06503.
Peralta, G., D. P. Vázquez, N. P. Chacoff, S. B. Lomáscolo, G. L. W. Perry, and J. M. Tylianakis. 2020c. Trait matching and phenological overlap increase the spatio-temporal stability and functionality of plant-pollinator interactions. Ecology Letters 23:1107-1116. https://doi.org/10.1111/ele.13510.
Petanidou, T., A. S. Kallimanis, J. Tzanopoulos, S. P. Sgardelis, and J. D. Pantis. 2008. Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecology Letters 11:564-575. https://doi.org/10.1111/j.1461-0248.2008.01170.x.
Pilosof, S., M. A. Porter, M. Pascual, and S. Kéfi. 2017. The multilayer nature of ecological networks. Nature Ecology and Evolution 1:0101. https://doi.org/10.1038/s41559-017-0101.
Pimm, S. L. 1982. Food webs. Chapman and Hall. https://doi.org/10.1007/978-94-009-5925-5.
Pimm, S. L., and J. H. Lawton. 1980. Are Food Webs Divided into Compartments? Journal of Animal Ecology 49:879-898. https://doi.org/10.2307/4233.
Pimm, S. L., J. H. Lawton, and J. E. Cohen. 1991. Food web patterns and their consequences. Nature 350:669-674. https://doi.org/10.1038/350669a0.
Pires, M. M., P. R. Guimarães, M. S. Araújo, A. A. Giaretta, J. C. L. Costa, and S. F. dos Reis. 2011. The nested assembly of individual-resource networks. Journal of Animal Ecology 80:896-903. https://doi.org/10.1111/j.1365-2656.2011.01818.x.
Pires, M. M., J. L. O’Donnell, L. A. Burkle, C. DÃaz-Castelazo, D. H. Hembry, J. D. Yeakel, E. A. Newman, L. P. Medeiros, M. A. M. de Aguiar, and P. R. Guimarães Jr. 2020. The indirect paths to cascading effects of extinctions in mutualistic networks. Ecology 101:e03080-e03080. https://doi.org/10.1002/ecy.3080.
Pocock, M. J. O., D. M. Evans, and J. Memmott. 2012. The robustness and restoration of a network of ecological networks. Science 335:973-977. https://doi.org/10.1126/science.1214915.
Poisot, T., G. Bergeron, K. Cazelles, T. Dallas, D. Gravel, A. MacDonald, B. Mercier, C. Violet, and S. Vissault. 2021. Global knowledge gaps in species interaction networks data. Journal of Biogeography 48:1552-1563. https://doi.org/10.1111/jbi.14127.
Poisot, T., E. Canard, D. Mouillot, N. Mouquet, and D. Gravel. 2012. The dissimilarity of species interaction networks. Ecology Letters 15:1353-1361. https://doi.org/10.1111/ele.12002.
Poisot, T., N. Mouquet, and D. Gravel. 2013. Trophic complementarity drives the biodiversity-ecosystem functioning relationship in food webs. Ecology Letters 16:853-861. https://doi.org/10.1111/ele.12118.
Poisot, T., D. B. Stouffer, and D. Gravel. 2015. Beyond species: why ecological interaction networks vary through space and time. Oikos 124:243-251. https://doi.org/10.1111/oik.01719.
Polis, G. A. 1991. Complex trophic interactions in deserts: an empirical critique of food-web theory. American Naturalist 138:123-155. https://doi.org/10.1086/285208.
Poulin, R., B. R. Krasnov, S. Pilosof, and D. W. Thieltges. 2013. Phylogeny determines the role of helminth parasites in intertidal food webs. Journal of Animal Ecology 82:1265-1275. https://doi.org/10.1111/1365-2656.12101.
Pringle, R. M., and M. C. Hutchinson. 2020. Resolving food-web structure. Annual Review of Ecology, Evolution, and Systematics 51:55-80. https://doi.org/10.1146/annurev-ecolsys-110218-024908.
Rader, R., I. Bartomeus, J. M. Tylianakis, and E. Laliberté. 2014. The winners and losers of land use intensification: pollinator community disassembly is non-random and alters functional diversity. Diversity and Distributions 20:908-917. https://doi.org/10.1111/ddi.12221.
Rafferty, N. E., P. J. CaraDonna, and J. L. Bronstein. 2015. Phenological shifts and the fate of mutualisms. Oikos 124:14-21. https://doi.org/10.1111/oik.01523.
Ramos-Robles, M., O. R. Vargas-Cardoso, A. M. Corona-López, A. Flores-Palacios, and V. H. Toledo-Hernández. 2020. Spatio-temporal variation of Cerambycidae-host tree interaction networks. PLoS ONE 15:e0228880. https://doi.org/10.1371/journal.pone.0228880.
Rand, T. A., J. M. Tylianakis, and T. Tscharntke. 2006. Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecology Letters 9:603-614. https://doi.org/10.1111/j.1461-0248.2006.00911.x.
Resasco, J., N. P. Chacoff, and D. P. Vázquez. 2021. Plant-pollinator interactions between generalists persist over time and space. Ecology 102:e03359. https://doi.org/10.1002/ecy.3359.
Rezende, E. L., J. E. Lavabre, P. R. Guimarães Jr., P. Jordano, and J. Bascompte. 2007. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925-928. https://doi.org/10.1038/nature05956.
Ricklefs, R. E. 2004. A comprehensive framework for global patterns in biodiversity. Ecology Letters 7:1-15. https://doi.org/10.1046/j.1461-0248.2003.00554.x.
Ricklefs, R. E. 2012. Naturalists, natural history, and the nature of biological diversity. The American Naturalist 179:423-435. https://doi.org/10.1086/664622.
Rivera-Hutinel, A., R. O. Bustamante, V. H. Marín, and R. Medel. 2012. Effects of sampling completeness on the structure of plant-pollinator networks. Ecology 93:1593-1603. https://doi.org/10.1890/11-1803.1.
Rodriguez-Cabal, M. A., M. N. Barrios-Garcia, G. C. Amico, M. A. Aizen, and N. J. Sanders. 2013. Node-by-node disassembly of a mutualistic interaction web driven by species introductions. Proceedings of the National Academy of Sciences 110:16503-16507. https://doi.org/10.1073/pnas.1300131110.
Rohr, R. P., R. E. Naisbit, C. Mazza, and L.-F. Bersier. 2016. Matching-centrality decomposition and the forecasting of new links in networks. Proceedings. Biological sciences 283:20152702. https://doi.org/10.1098/rspb.2015.2702.
Russo, L., J. Memmott, D. Montoya, K. Shea, and Y. M. Buckley. 2014. Patterns of introduced species interactions affect multiple aspects of network structure in plant-pollinator communities. Ecology 95:2953-2963. https://doi.org/10.1890/13-2229.1.
Santos, G. M. M., C. M. Aguiar, J. Genini, C. F. Martins, F. C. Zanella, and M. A. Mello. 2012. Invasive Africanized honeybees change the structure of native pollination networks in Brazil. Biological Invasions 14:2369-2378. https://doi.org/10.1007/s10530-012-0235-8.
Santos, M., L. Cagnolo, T. Roslin, E. F. Ruperto, M. L. Bernaschini, and D. P. Vázquez. 2021. Robustness of a meta-network to alternative habitat loss scenarios. Oikos 130:133-142. https://doi.org/10.1111/oik.07835.
Sazatornil, F. D., M. Moré, S. Benitez-Vieyra, A. A. Cocucci, I. J. Kitching, B. O. Schlumpberger, P. E. Oliveira, M. Sazima, and F. W. Amorim. 2016. Beyond neutral and forbidden links: morphological matches and the assembly of mutualistic hawkmoth-plant networks. Journal of Animal Ecology 85:1586-1594. https://doi.org/10.1111/1365-2656.12509.
Schemske, D. W., G. G. Mittelbach, H. V. Cornell, J. M. Sobel, and K. Roy. 2009. Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution, and Systematics 40:245-269. https://doi.org/10.1146/annurev.ecolsys.39.110707.173430.
Schleuning, M., J. Fründ, A.-M. Klein, S. Abrahamczyk, R. Alarcón, M. Albrecht, G. K. S. Andersson, S. Bazarian, K. Böhning-Gaese, R. Bommarco, B. Dalsgaard, D. M. Dehling, A. Gotlieb, M. Hagen, T. Hickler, A. Holzschuh, C. N. Kaiser-Bunbury, H. Kreft, R. J. Morris, B. Sandel, W. J. Sutherland, J.-C. Svenning, T. Tscharntke, S. Watts, C. N. Weiner, M. Werner, N. M. Williams, C. Winqvist, C. F. Dormann, and N. Blüthgen. 2012. Specialization of mutualistic interaction networks decreases toward tropical latitudes. Current Biology 22:1925-1931. https://doi.org/10.1016/j.cub.2012.08.015.
Schleuning, M., J. Fründ, O. Schweiger, E. Welk, J. Albrecht, M. Albrecht, M. Beil, G. Benadi, N. Blüthgen, H. Bruelheide, K. Böhning-Gaese, D. M. Dehling, C. F. Dormann, N. Exeler, N. Farwig, A. Harpke, T. Hickler, A. Kratochwil, M. Kuhlmann, I. Kühn, D. Michez, S. Mudri-Stojnić, M. Plein, P. Rasmont, A. Schwabe, J. Settele, A. Vujić, C. N. Weiner, M. Wiemers, and C. Hof. 2016. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nature Communications 7:13965. https://doi.org/10.1038/ncomms13965.
Schneiberg, I., D. Boscolo, M. Devoto, M. S. Vinicius, C. A. Dalmaso, J. W. Ribeiro, M. C. Ribeiro, A. de Camargo Guaraldo, B. B. Niebuhr, and I. G. Varassin. 2020. Urbanization homogenizes the interactions of plant-frugivore bird networks. Urban Ecosystems 23:457-470. https://doi.org/10.1007/s11252-020-00927-1.
Schwarz, B., C. F. Dormann, D. P. Vázquez, and J. Fründ. 2021. Within-day dynamics of plant-pollinator networks are dominated by early flower closure: an experimental test of network plasticity. Oecologia 196:781-794. https://doi.org/10.1007/s00442-021-04952-5.
Schwarz, B., D. P. Vázquez, P. J. CaraDonna, T. M. Knight, G. Benadi, C. F. Dormann, B. Gauzens, E. Motivans, J. Resasco, N. Blüthgen, L. A. Burkle, Q. Fang, C. N. Kaiser-Bunbury, R. Alarcón, J. A. Bain, N. P. Chacoff, S.-Q. Huang, G. LeBuhn, M. MacLeod, T. Petanidou, C. Rasmussen, M. P. Simanonok, A. H. Thompson, and J. Fründ. 2020. Temporal scale-dependence of plant-pollinator networks. Oikos 129:1289-1302. https://doi.org/10.1111/oik.07303.
Sebastián-González, E., M. M. Pires, C. I. Donatti, P. R. Guimarães Jr., and R. Dirzo. 2017. Species traits and interaction rules shape a species-rich seed-dispersal interaction network. Ecology and Evolution 7:4496-4506. https://doi.org/10.1002/ece3.2865.
Segar, S. T., T. M. Fayle, D. S. Srivastava, T. M. Lewinsohn, O. T. Lewis, V. Novotny, R. L. Kitching, and S. C. Maunsell. 2020. The role of evolution in shaping ecological networks. Trends in Ecology and Evolution 35:454-466. https://doi.org/10.1016/j.tree.2020.01.004.
Shurin, J. B., E. T. Borer, E. W. Seabloom, K. Anderson, C. A. Blanchette, B. Broitman, S. D. Cooper, and B. S. Halpern. 2002. A cross-ecosystem comparison of the strength of trophic cascades. Ecology Letters 5:785-791. https://doi.org/10.1046/j.1461-0248.2002.00381.x.
Simmons, B. I., A. R. Cirtwill, N. J. Baker, H. S. Wauchope, L. V. Dicks, D. B. Stouffer, and W. J. Sutherland. 2019. Motifs in bipartite ecological networks: uncovering indirect interactions. Oikos 128:154-170. https://doi.org/10.1111/oik.05670.
Smith-Ramesh, L. M., A. C. Moore, and O. J. Schmitz. 2017. Global synthesis suggests that food web connectance correlates to invasion resistance. Global Change Biology 23:465-473. https://doi.org/10.1111/gcb.13460.
Soliveres, S., F. van der Plas, P. Manning, D. Prati, M. M. Gossner, S. C. Renner, F. Alt, H. Arndt, V. Baumgartner, J. Binkenstein, K. Birkhofer, S. Blaser, N. Blüthgen, S. Boch, S. Böhm, C. Börschig, F. Buscot, T. Diekötter, J. Heinze, N. Hölzel, K. Jung, V. H. Klaus, T. Kleinebecker, S. Klemmer, J. Krauss, M. Lange, E. K. Morris, J. Müller, Y. Oelmann, J. Overmann, E. Pašalić, M. C. Rillig, H. M. Schaefer, M. Schloter, B. Schmitt, I. Schöning, M. Schrumpf, J. Sikorski, S. A. Socher, E. F. Solly, I. Sonnemann, E. Sorkau, J. Steckel, I. Steffan-Dewenter, B. Stempfhuber, M. Tschapka, M. Türke, P. C. Venter, C. N. Weiner, W. W. Weisser, M. Werner, C. Westphal, W. Wilcke, V. Wolters, T. Wubet, S. Wurst, M. Fischer, and E. Allan. 2016. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536:456-459. https://doi.org/10.1038/nature19092.
Sonne, J., J. Vizentin-Bugoni, P. K. Maruyama, A. C. Araujo, E. Chávez-González, A. G. Coelho, P. A. Cotton, O. H. Marín-Gómez, C. Lara, L. R. Lasprilla, C. G. Machado, M. A. Maglianesi, T. S. Malucelli, A. M. M. González, G. M. Oliveira, P. E. Oliveira, R. Ortiz-Pulido, M. A. Rocca, L. C. Rodrigues, I. Sazima, B. I. Simmons, B. Tinoco, I. G. Varassin, M. F. Vasconcelos, B. O’Hara, M. Schleuning, C. Rahbek, M. Sazima, and B. Dalsgaard. 2020. Ecological mechanisms explaining interactions within plant-hummingbird networks: morphological matching increases towards lower latitudes. Proceedings of the Royal Society B: Biological Sciences 287:20192873. https://doi.org/10.1098/rspb.2019.2873.
Sørensen, P. B., C. F. Damgaard, B. Str, Y. L. Dupont, M. B, L. G. Carvalheiro, J. C. Biesmeijer, J. M. Olsen, M. Hagen, and G. Potts. 2012. A method for under-sampled ecological network data analysis: plant-pollination as case study. Journal of Pollination Ecology 6. https://doi.org/10.26786/1920-7603(2011)18.
Srinivasan, U. T., J. A. Dunne, J. Harte, and N. D. Martínez. 2007. Response of complex food webs to realistic extinction sequences. Ecology 88:671-682. https://doi.org/10.1890/06-0971.
Staniczenko, P. P. A., J. C. Kopp, and S. Allesina. 2013. The ghost of nestedness in ecological networks. Nature Communications 4:1391. https://doi.org/10.1038/ncomms2422.
Stouffer, D. B., and J. Bascompte. 2011. Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences 108:3648-3652. https://doi.org/10.1073/pnas.1014353108.
Stouffer, D. B., M. Sales-Pardo, M. I. Sirer, and J. Bascompte. 2012. Evolutionary conservation of species’ roles in food webs. Science 335:1489-1492. https://doi.org/10.1126/science.1216556.
Thébault, E., and C. Fontaine. 2010. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853-856. https://doi.org/10.1126/science.1188321.
Thompson, R. M., U. Brose, J. A. Dunne, R. O. Hall, S. Hladyz, R. L. Kitching, N. D. Martínez, H. Rantala, T. N. Romanuk, D. B. Stouffer, and J. M. Tylianakis. 2012. Food webs: reconciling the structure and function of biodiversity. Trends in Ecology and Evolution 27:689-697. https://doi.org/10.1016/j.tree.2012.08.005.
Toju, H., P. R. Guimaraes, J. M. Olesen, and J. N. Thompson. 2014. Assembly of complex plant-fungus networks. Nature Communications 5:1-7. https://doi.org/10.1038/ncomms6273.
Toju, H., H. Sato, S. Yamamoto, and A. S. Tanabe. 2018. Structural diversity across arbuscular mycorrhizal, ectomycorrhizal, and endophytic plant-fungus networks. BMC Plant Biology 18:1-12. https://doi.org/10.1186/s12870-018-1500-5.
Trøjelsgaard, K., P. Jordano, D. W. Carstensen, and J. M. Olesen. 2015. Geographical variation in mutualistic networks: similarity, turnover and partner fidelity. Proceedings of the Royal Society B: Biological Sciences 282:20142925. https://doi.org/10.1098/rspb.2014.2925.
Trøjelsgaard, K., and J. M. Olesen. 2016. Ecological networks in motion: micro- and macroscopic variability across scales. Functional Ecology 30:1926-1935. https://doi.org/10.1111/1365-2435.12710.
Tur, C., J. M. Olesen, and A. Traveset. 2015. Increasing modularity when downscaling networks from species to individuals. Oikos 124:581-592. https://doi.org/10.1111/oik.01668.
Tur, C., B. Vigalondo, K. Trøjelsgaard, J. M. Olesen, and A. Traveset. 2014. Downscaling pollen-transport networks to the level of individuals. Journal of Animal Ecology 83:306-317. https://doi.org/10.1111/1365-2656.12130.
Tylianakis, J. M., R. K. Didham, J. Bascompte, and D. A. Wardle. 2008. Global change and species interactions in terrestrial ecosystems. Ecology Letters 11:1351-1363. https://doi.org/10.1111/j.1461-0248.2008.01250.x.
Tylianakis, J. M., E. Laliberté, A. Nielsen, and J. Bascompte. 2010. Conservation of species interaction networks. Biological Conservation 143(10):2270-2279. https://doi.org/10.1016/j.biocon.2009.12.004.
Tylianakis, J. M., and R. J. Morris. 2017. Ecological networks across environmental gradients. Annual Review of Ecology, Evolution, and Systematics 48:25-48. https://doi.org/10.1146/annurev-ecolsys-110316-022821.
Ulrich, W., and N. J. Gotelli. 2007. Null model analysis of species nestedness patterns. Ecology 88:1824-1831. https://doi.org/10.1890/06-1208.1.
Urban, D., and T. Keitt. 2001. Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205-1218. https://doi.org/10.1890/0012-9658(2001)082[1205:LCAGTP]2.0.CO;2.
Valdovinos, F. S. 2019. Mutualistic networks: moving closer to a predictive theory. Ecology Letters 22:1517-1534. https://doi.org/10.1111/ele.13279.
Valdovinos, F. S., E. L. Berlow, P. Moisset de Espanés, R. Ramos-Jiliberto, D. P. Vázquez, and N. D. Martínez. 2018. Species traits and network structure predict the success and impacts of pollinator invasions. Nature Communications 9:2153. https://doi.org/10.1038/s41467-018-04593-y.
Valido, A., M. C. Rodríguez-Rodríguez, and P. Jordano. 2019. Honeybees disrupt the structure and functionality of plant-pollinator networks. Scientific Reports 9:4711. https://doi.org/10.1038/s41598-019-41271-5.
Valladares, G. R., and A. Salvo. 1999. Insect-plant food webs could provide new clues for pest management. Environmental Entomology 28:539-544. https://doi.org/10.1093/ee/28.4.539.
Valverde, S., J. Piñero, B. Corominas-Murtra, J. Montoya, L. Joppa, and R. Solé. 2018. The architecture of mutualistic networks as an evolutionary spandrel. Nature Ecology and Evolution 2:94-99. https://doi.org/10.1038/s41559-017-0383-4.
Vasseur, D. A., and K. S. McCann. 2005. A mechanistic approach for modeling temperature‐dependent consumer‐resource dynamics. The American Naturalist 166:184-198. https://doi.org/10.1086/431285.
Vázquez, D. P. 2005. Degree distribution in plant-animal mutualistic networks: forbidden links or random interactions? Oikos 108:421-426. https://doi.org/10.1111/j.0030-1299.2005.13619.x.
Vázquez, D. P., and M. A. Aizen. 2003. Null model analyses of specialization in plant-pollinator interactions. Ecology 84:2493-2501. https://doi.org/10.1890/02-0587.
Vázquez, D. P., and M. A. Aizen. 2006. Community-wide patterns of specialization in plant-pollinator interactions revealed by null-models. Pp. 200-219 in N. M. Waser and J. Ollerton (eds.). Plant-pollinator interactions: from specialization to generalization. University of Chicago Press.
Vázquez, D. P., N. Blüthgen, L. Cagnolo, and N. P. Chacoff. 2009a. Uniting pattern and process in plant-animal mutualistic networks: a review. Annals of Botany 103:1445-1457. https://doi.org/10.1093/aob/mcp057.
Vázquez, D. P., N. P. Chacoff, and L. Cagnolo. 2009b. Evaluating multiple determinants of the structure of plant-animal mutualistic networks. Ecology 90:2039-2046. https://doi.org/10.1890/08-1837.1.
Vázquez, D. P., E. Gianoli, W. F. Morris, and F. Bozinovic. 2017. Ecological and evolutionary impacts of changing climatic variability. Biological Reviews 92:22-42. https://doi.org/10.1111/brv.12216.
Vázquez, D. P., S. B. Lomáscolo, M. B. Maldonado, N. P. Chacoff, J. Dorado, E. L. Stevani, and N. L. Vitale. 2012. The strength of plant-pollinator interactions. Ecology 93:719-725. https://doi.org/10.1890/11-1356.1.
Vázquez, D. P., C. J. Melián, N. M. Williams, N. Blüthgen, B. R. Krasnov, and R. Poulin. 2007. Species abundance and asymmetric interaction strength in ecological networks. Oikos 116:1120-1127. https://doi.org/10.1111/j.0030-1299.2007.15828.x.
Vázquez, D. P., W. F. Morris, and P. Jordano. 2005. Interaction frequency as a surrogate for the total effect of animal mutualists on plants: Total effect of animal mutualists on plants. Ecology Letters 8:1088-1094. https://doi.org/10.1111/j.1461-0248.2005.00810.x.
Vázquez, D. P., R. Ramos-Jiliberto, P. Urbani, and F. S. Valdovinos. 2015. A conceptual framework for studying the strength of plant-animal mutualistic interactions. Ecology Letters 18:385-400. https://doi.org/10.1111/ele.12411.
Vázquez, D. P., and D. Simberloff. 2002. Ecological specialization and susceptibility to disturbance: conjectures and refutations. American Naturalist 159:606-623. https://doi.org/10.1086/339991.
Vázquez, D. P., and D. Simberloff. 2003. Changes in interaction biodiversity induced by an introduced ungulate. Ecology Letters 6:1077-1083. https://doi.org/10.1046/j.1461-0248.2003.00534.x.
Vellend, M. 2010. Conceptual unification in community ecology. Quarterly Review of Biology 85:185-206. https://doi.org/10.1086/652373.
Vellend, M. 2016. The Theory of Ecological Communities. Princeton University Press. https://doi.org/10.1515/9781400883790.
Verdú, M., and A. Valiente-Banuet. 2011. The relative contribution of abundance and phylogeny to the structure of plant facilitation networks. Oikos 120:1351-1356. https://doi.org/10.1111/j.1600-0706.2011.19477.x.
Vidal, M. C., and S. M. Murphy. 2018. Bottom-up vs. top-down effects on terrestrial insect herbivores: a meta-analysis. Ecology Letters 21:138-150. https://doi.org/10.1111/ele.12874.
Vieira, M. C., and M. Almeida-Neto. 2015. A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. Ecology Letters 18:144-152. https://doi.org/10.1111/ele.12394.
Vilà, M., I. Bartomeus, A. C. Dietzsch, T. Petanidou, I. Steffan-Dewenter, J. C. Stout, and T. Tscheulin. 2009. Invasive plant integration into native plant-pollinator networks across Europe. Proceedings of the Royal Society B: Biological Sciences 276:3887-3893. https://doi.org/10.1098/rspb.2009.1076.
Visser, M. E., and P. Gienapp. 2019. Evolutionary and demographic consequences of phenological mismatches. Nature Ecology and Evolution 3:879-885. https://doi.org/10.1038/s41559-019-0880-8.
Vitali, A., Y. Sasal, D. P. Vázquez, M. F. Miguel, and M. A. Rodríguez-Cabal. 2021. The disruption of a keystone interaction erodes pollination and seed dispersal networks. Ecology 103(1):e03547. https://doi.org/10.1002/ecy.3547.
Vizentin-Bugoni, J., P. K. Maruyama, V. J. Debastiani, L. da S. Duarte, B. Dalsgaard, and M. Sazima. 2016. Influences of sampling effort on detected patterns and structuring processes of a Neotropical plant-hummingbird network. Journal of Animal Ecology 85:262-272. https://doi.org/10.1111/1365-2656.12459.
Vizentin-Bugoni, J., P. K. Maruyama, and M. Sazima. 2014. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird-plant network. Proceedings of the Royal Society B: Biological Sciences 281:20132397. https://doi.org/10.1098/rspb.2013.2397.
Wagner, D. L. 2020. Insect declines in the anthropocene. Annual Review of Entomology 65:457-480. https://doi.org/10.1146/annurev-ento-011019-025151.
Wang, S., and U. Brose. 2018. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecology Letters 21:9-20. https://doi.org/10.1111/ele.12865.
Waser, N. M., L. Chittka, M. V. Price, N. M. Williams, and J. Ollerton. 1996. Generalization in pollination systems, and why it matters. Ecology 77:1043-1060. https://doi.org/10.2307/2265575.
Webb, C. O., D. D. Ackerly, M. A. McPeek, and M. J. Donoghue. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33:475-505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448.
Week, B., and S. L. Nuismer. 2019. The measurement of coevolution in the wild. Ecol Lett 22:717-725. https://doi.org/10.1111/ele.13231.
Weinstein, B. G., and C. H. Graham. 2017. On comparing traits and abundance for predicting species interactions with imperfect detection. Food Webs 11:17-25. https://doi.org/10.1016/j.fooweb.2017.05.002.
Wilkins, A. S. 2007. Between “design” and “bricolage”: Genetic networks, levels of selection, and adaptive evolution. Proceedings of the National Academy of Sciences 104:8590-8596. https://doi.org/10.1073/pnas.0701044104.
Woodward, G., J. P. Benstead, O. S. Beveridge, J. Blanchard, T. Brey, L. E. Brown, W. F. Cross, N. Friberg, T. C. Ings, U. Jacob, S. Jennings, M. E. Ledger, A. M. Milner, J. M. Montoya, E. O’Gorman, J. M. Olesen, O. L. Petchey, D. E. Pichler, D. C. Reuman, M. S. A. Thompson, F. J. F. Van Veen, and G. Yvon-Durocher. 2010. Ecological networks in a changing climate. Pp. 71-138 in G. Woodward (ed.). Advances in Ecological Research. Academic Press. https://doi.org/10.1016/B978-0-12-381363-3.00002-2.
Wootton, J. T. 1994. The nature and consequences of indirect effects in ecological communities. Annual Review of Ecology and Systematics 25:443-466. https://doi.org/10.1146/annurev.es.25.110194.002303.
Wootton, J. T. 1997. Estimates and tests of per capita interaction strength: diet, abundance, and impact of intertidally foraging birds. Ecological Monographs 67:45-64. https://doi.org/10.1890/0012-9615(1997)067[0045:EATOPC]2.0.CO;2.
Wootton, J. T., and M. Emmerson. 2005. Measurement of interaction strength in nature. Annual Review of Ecology, Evolution, and Systematics 36:419-444. https://doi.org/10.1146/annurev.ecolsys.36.091704.175535.
Wu, R., Y. Lin, X. Liu, C. Zhan, H. He, M. Shi, Z. Jiang, and B. Shen. 2020. Phenotype-genotype network construction and characterization: a case study of cardiovascular diseases and associated non-coding RNAs. Database 2020:baz147. https://doi.org/10.1093/database/baz147.
Wulf, A. 2015. The Invention of Nature: Alexander von Humboldt's New World. John Murray
Yodzis, P. 1988. The indeterminacy of ecological interactions as perceived through perturbation experiments. Ecology 69:508-515. https://doi.org/10.2307/1940449.
Zamborain‐Mason, J., G. R. Russ, R. A. Abesamis, A. A. Bucol, and S. R. Connolly. 2017. Network theory and metapopulation persistence: incorporating node self‐connections. Ecology Letters 20:815-831. https://doi.org/10.1111/ele.12784.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Diego P. Vázquez, Guadalupe Peralta, Luciano Cagnolo, Micaela Santos
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors retain their rights as follows: 1) by granting the journal the right to its first publication, and 2) by registering the published article with a Creative Commons Attribution License (CC-BY 4.0), which allows authors and third parties to view and use it as long as they clearly mention its origin (citation or reference, including authorship and first publication in this journal). Authors can make other non-exclusive distribution agreements as long as they clearly indicate their origin and are encouraged to widely share and disseminate the published version of their work.