Coihue and andean cypress saplings growth in relation to canopy leaf area index

Authors

  • Marina Caselli Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP)
  • Gabriel A. Loguercio Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP). Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB)
  • María F. Urretavizcaya Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP)
  • Guillermo E. Defossé Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). 2 Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP). Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB). Centro de Investigación Esquel de Montaña y Estepa Patagónicas (CIEMEP)

DOI:

https://doi.org/10.25260/EA.22.32.1.0.1857

Keywords:

height increment, natural regeneration, growing space occupancy, LAI, Austrocedrus chilensis, Nothofagus dombeyi, mixed forest, forest management

Abstract

The growing space occupancy by the canopy influences the development of natural regeneration. The leaf area index (LAI) is a variable that can be used in ecological studies and in silvicultural decisions process to represent the growing space occupancy in a stand. It is especially useful in mixed forests, as it is better at capturing the complexity of forest structure than other density variables. Andean cypress (Austrocedrus chilensis) and coihue (Nothofagus dombeyi) are species of forest importance of the Andean-Patagonian forests, which can grow in mixed formations with productive potential. Being able to determine which are the target structures of these forests to promote regeneration implies knowing how the canopy growing space occupancy affects the growth of advanced regeneration. The objective of this study was to evaluate the relationship between the canopy LAI and its distribution in the species and height strata with the height increment of advanced regeneration of Andean cypress and coihue. The height increment of the saplings shows an opposite tendency to the LAI of the canopy, although this relationship is significant only for coihue. For this species, the growth of the saplings is favored below a canopy LAI close to 4. In turn, the height increment, especially for coihue, is negatively influenced by a greater participation of coihue in the canopy LAI. From the results, it is inferred that, in order to stimulate the growth of the regeneration of both species, it is necessary to keep, by thinning, the LAI below 4 in the sectors where it is necessary to promote the regeneration of coihue, and above 4 to promote the Andean cypress regeneration.

References

Amoroso, M. M., and B. C. Larson. 2010. Stand development patterns as a consequence of the mortality in Austrocedrus chilensis forests. For Ecol Manage 259:1981-1992. https://doi.org/10.1016/j.foreco.2010.02.009.

Angelini, A., P. Corona, F. Chianucci, and L. Portoghesi. 2015. Structural attributes of stand overstory and light under the canopy. Ann Silvic Res 39:23-31.

Arturi, M. F., J. J. Fernando, J. F. Goya, P. F. Yapura, and J. L. Frangi. 2001. Tendencias espaciales de la regeneración de Austrocedrus chilensis en relación con el dosel arbóreo. Ecol Aust 11:31-38.

Asner, G. P., J. M. O. Scurlock, and J. A. Hicke. 2003. Global synthesis of leaf area index observations. Glob Chang Biol 14:237-243.

Augspurger, C. K. 1984. Seedling survival of tropical tree species: interactions of dispersal distance, light‐gaps, and pathogens. Ecol 65(6):1705-1712. https://doi.org/10.2307/1937766.

Aussenac, G. 2000. Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture. Ann For Sci 57:287-301. https://doi.org/10.1051/forest:2000119.

Barbier S., F. Gosselin, and P. Balandier. 2008. Influence of tree species on understory vegetation diversity and mechanisms involved-A critical review for temperate and boreal forests. For Ecol Manage 254:1-15. https://doi.org/10.1016/j.foreco.2007.09.038.

Bazzaz, F. A. 1979. The Physiological Ecology of Plant Succession. Ann Rev Ecol Syst 10:351-371. https://doi.org/10.1146/annurev.es.10.110179.002031.

Breshears, D. D., P. M. Rich, F. J. Barnes, and K. Campbell. 1997. Overstory-imposed heterogeneity in solar radiation and soil moisture in a semiarid woodland. Ecol Appl 7:1201-1215. https://doi.org/10.1890/1051-0761(1997)007[1201:OIHISR]2.0.CO;2.

Brokaw, N. V. 1985. Treefalls, regrowth, and community structure in tropical forests. Pp. 53-69 in S. T. A. Pickett and P. S. White (eds.). The ecology of natural disturbance and patch dynamics. Academic Press, Orlando, Florida, USA. https://doi.org/10.1016/B978-0-12-554520-4.50009-5.

Brown, M. J., and G. G. Parker. 1994. Canopy light transmittance in a chronosequence of mixed species deciduous forests. Can J For Res 24:1694-1703. https://doi.org/10.1139/x94-219.

Canham, C. D. 1989. Different Respones to Gaps Among Shade-Tollerant Tree Species. Ecol 70:548-550. https://doi.org/10.2307/1940200.

Canham, C. D., and P. L. Marks. 1985. The response of woody plants to disturbance: patterns of establishment and growth. Pp. 197-216 in S. T. A. Pickett and P. S. White (eds.). The ecology of natural disturbance and patch dynamics. Academic Press, Orlando, Florida, USA. https://doi.org/10.1016/B978-0-12-554520-4.50016-2.

Cárdenas, C., and C. H. Lusk. 2002. Juvenile height growth rates and sorting of three Nothofagus species on an altitudinal gradient. Gayana Bot 59(1):21-25. https://doi.org/10.4067/S0717-66432002000100004.

Carmean, W. H. 1965. Black Oak Site Quality in Relation to Soil and Topography in Southeastern Ohio. Soil Sci Soc Am J 29(3):308. https://doi.org/10.2136/sssaj1965.03615995002900030024x.

Caselli, M., M. F. Urretavizcaya, G. A. Loguercio, and G. E. Defossé. 2019. Light and moisture conditions suitable for establishing andean cypress and coihue beech seedlings in patagonia: A nursery approach. For Sci 65:27-39. https://doi.org/10.1093/forsci/fxy032.

Caselli, M., G. A. Loguercio, M. F. Urretavizcaya, and G. E. Defossé. 2020. Developing Silvicultural Tools for Managing Mixed Forest Structures in Patagonia. For Sci 66:119-129. https://doi.org/10.1093/forsci/fxz052.

Caselli, M., G. A. Loguercio, M. F. Urretavizcaya, and G. E. Defossé. 2021a. Stand level volume increment in relation to leaf area index of Austrocedrus chilensis and Nothofagus dombeyi mixed forests of Patagonia, Argentina. For Ecol Manage 494:119337. https://doi.org/10.1016/j.foreco.2021.119337.

Caselli, M., M. F. Urretavizcaya, G. A. Loguercio, L. Contardi, S. Gianolini, and G. E. Defossé. 2021b. Effects of canopy cover and neighboring vegetation on the early development of planted Austrocedrus chilensis and Nothofagus dombeyi in north Patagonian degraded forests. For Ecol Manag 479:118543. https://doi.org/10.1016/j.foreco.2020.118543.

Chauchard, L. M., and J. C Barnaba. 1986. Plan de Ordenación Cuartel de Loma del Medio- Río Azul. Comisión Mixta, convenio IFONA- Servicio Forestal Andino. El Bolsón, Río Negro.

CIEFAP-MAyDS. 2016. Actualización de la clasificación de tipos forestales y cobertura del suelo de

la región Bosque Andino Patagónico. Informe Final. CIEFAP. Esquel.

Clark, D. A., and D. B. Clark. 1999. Assessing the growth of tropical rain forest trees: Issues for forest modeling and management. Ecol Appl 9:981-997. https://doi.org/10.1890/1051-0761(1999)009[0981:ATGOTR]2.0.CO;2.

Colmet-daage, F., M. L. Lanciotti, and A. A. Marcolin. 1995. Importancia forestal de los suelos volcánicos de la Patagonia Norte y Central. INTA-SAGyP. Argentina. Pp. 27.

Comeau, P. G., C. N. Filipescu, R. Kabzems, and C. DeLong. 2009. Growth of white spruce underplanted beneath spaced and unspaced aspen stands in northeastern B.C.-10 year results. Elsevier. https:// doi.org/10.1016/j.foreco.2008.11.023.

Coomes, D. A., R. B. Allen, W. A. Bentley, L. E. Burrows, C. D. Canham, L. Fagan, D. M. Forsyth, A. Gaxiola-Alcantar, R. L. Parfitt, W. A. Ruscoe, D. A. Wardle, D. J. Wilson, and E. F. Wright. 2005. The hare, the tortoise and the crocodile: The ecology of angiosperm dominance, conifer persistence and fern filtering. J Ecol 93:918-935. https://doi.org/10.1111/j.1365-2745.2005.01012.x.

Dezzotti, A. 1996. Austrocedrus chilensis and Nothofagus dombeyi stand development during secondary succession, in northwestern Patagonia, Argentina. For Ecol Manage 89:125-137. https://doi.org/10.1016/S0378-1127(96)03860-1.

Dezzotti, A., M. Rodríguez Arias, A. Parisi, R. Sbrancia, and D. Roat. 2004. Colonización y crecimiento de renovales de Nothofagus después de cortas selectivas de un rodal en la Patagonia, Argentina. For Syst 13:329-337.

Dezzotti, A., and L. Sancholuz. 1991. Los bosques de Austrocedrus chilensis en Argentina: ubicación, estructura y crecimiento. Bosque 12:43-52. https://doi.org/10.4206/bosque.1991.v12n2-04.

Di Rienzo, J., F. Casanoves, M. Balzarini, L. González, M. Tablada, and C. Robledo. 2017. InfoStat versión 2017.

Donoso, C. 1981. Tipos forestales de los bosques nativos de Chile. CONAF/PNUD-FAO, Programa de Investigación y Desarrollo Forestal.

Donoso, C. 1995. Bosques templados de Chile y Argentina. Variación, Estructura y dinámica. 3ª edición. Ed. Universitaria, Santiago, Chile. Pp. 485.

Donoso, P. J., D. P. Soto, R. E. Coopman, and S. Rodríguez-Bertos. 2013. Respuesta temprana de plantaciones de Nothofagus dombeyi y Nothofagus alpina a la disponibilidad de luz y tamaño de claro en un bosque degradado en el centro sur de Los Andes de Chile. Bosque 34:23-32. https://doi.org/10.4067/S0717-92002013000100004.

Drever, C. R., and K. P. Lertzman. 2001. Light-growth responses of coastal Douglas-fir and western redcedar saplings under different regimes of soil moisture and nutrients. Can J For Res 31:2124-2133. https://doi.org/10.1139/x01-149.

Emborg, J. 1998. Understorey light conditions and regeneration with respect to the structural dynamics of a near-natural temperate deciduous forest in Denmark. For Ecol Manage 106:83-95. https://doi.org/10.1016/S0378-1127(97)00299-5.

Falster, D. S., and M. Westoby. 2003. Leaf size and angle vary widely across species: what consequences for light interception? New Phytol 158:509-525. https://doi.org/10.1046/j.1469-8137.2003.00765.x.

Finzi, A. C., and C. D. Canham. 2000. Sapling growth in response to light and nitrogen availability in a southern New England forest. For Ecol Manage 131:153-165. https://doi.org/10.1016/S0378-1127(99)00206-6.

Garrido, C. C., and C. H. Lusk. 2002. Juvenile height growth rates and sorting of three Nothofagus species on an altitudinal gradient. Gayana Bot 59(1):21-25. https://doi.org/10.4067/S0717-66432002000100004.

Givnish, T. 1988. Adaptation to sun and shade: a whole-plant perspective. Aust J Plant Physiol 15:63-92. https://doi.org/10.1071/PP9880063.

Gobbi, M., and T. Schlichter. 1998. Survival of Austrocedrus chilensis seedlings in relation to microsite conditions and forest thinning. For Ecol Manage 111:137-146. https://doi.org/10.1016/S0378-1127(98)00314-4.

Gratzer, G., A. Darabant, P. Chhetri, P. Rai, and O. Eckmüllner. 2004. Interspecific variation in the response of growth, crown morphology, and survivorship to light of six tree species in the conifer belt of the Bhutan Himalayas. Can J For Res 34:1093-1107. https://doi.org/10.1139/x03-281.

Grosfeld, J. 2001. Análisis de la variabilidad morfológica y arquitectura de Austrocedrus chilensis (D. Don) Pic. Serm. et Bizzarri, Fitzroya cupressoides (Molina) I. M. Johnst., Pilgerodendron uviferum (D. Don) Florin y Cupressus sempervirens L. (CUPRESSACEAE). Universidad Nacional de Comahue. https://doi.org/10.1016/S0764-4469(00)01289-0.

Hart, S. A., Chen H. Y. H. 2006 - Understory vegetation dynamics of North American boreal forests. CRC Crit Rev Plant Sci 25:381-397. https://doi.org/10.1080/07352680600819286.

Hoffmann, A. E. 1982. Flora silvestre de Chile. Vol. 2: Zona austral. Santiago, Chile.

Kara, F., E. F. Loewenstein, and D. G. Brockway. 2017. Effects of basal area on survival and growth of longleaf pine when practicing selection silviculture. For Syst 26(1):1-12. https://doi.org/10.5424/fs/2017261-10043.

Kara, F., and O. Topaçoğlu. 2018. Influence of stand density and canopy structure on the germination and growth of Scots pine (Pinus sylvestris L.) seedlings. Environ Monit Assess 190(12):1-10. https://doi.org/10.1007/s10661-018-7129-x.

Kitzberger, T., D. F. Steinaker, and T. T. Veblen. 2000. Effects of climatic variability on facilitation of tree establishment in northern Patagonia. Ecol 81:1914-1924. https://doi.org/10.1890/0012-9658(2000)081[1914:EOCVOF]2.0.CO;2.

Suárez, M. L., and T. Kitzberger. 2008. Recruitment patterns following a severe drought: long-term compositional shifts in Patagonian forests. Can J For Res 38:3002-3010. https://doi.org/10.1139/X08-149.

Letourneau, F. 2006. Estudio de las interacciones positivas y negativas sobre el crecimiento de Austrocedrus chilensis durante una etapa inicial de desarrollo, en un matorral sucesional mésico. Tesis doctoral. Universidad Nacional del Comahue. Pp. 182.

Letourneau, F. J., E. Andenmatten, and T. Schlichter. 2004. Effect of climatic conditions and tree size on Austrocedrus chilensis-shrub interactions in northern Patagonia. For Ecol Manage 191:29-38. https://doi.org/10.1016/j.foreco.2003.11.002.

Lieberman, M., D. Lieberman, and R. Peralta. 1989. Forests are not just Swiss cheese: canopy stereogeometry of non-gaps in tropical forests. Ecol 70(3):550-552. https://doi.org/10.2307/1940201.

Lieffers, V. J., C. Messier, K. J. Stadt, F. Gendron, and P. G. Comeau. 1999. Predicting and managing light in the understory of boreal forests. Can J For Res 29:796-811. https://doi.org/10.1139/x98-165.

Loguercio, G. A. 1997. Erhaltung der Baumart Austrocedrus chilensis (D. Don) et Boutelje durch nachhaltige Nutzung. Tesis. Doctoral, Fac. de Cs. Ftales de la Universidad de Munich.

Loguercio, G. A., and M. Rajchenberg. 2004. El “mal del ciprés" y la silvicultura del ciprés de la cordillera. Pp. 1-18 in J. Frangi and A. D. Brown (eds.). Ecología y manejo de los bosques nativos de Argentina.

Loguercio, G. A., M. F. Urretavizcaya, M. Caselli, and G. E. Defossé. 2018. Propuestas silviculturales para el manejo de bosques de Austrocedrus chilensis sanos y afectados por el mal del ciprés de Argentina. Silvicultura en Bosques Nativos, OSU Oregón USA:111-128.

Loguercio, G. A., and H. Ivancich. 2019. Prueba piloto para evaluar Bosques secundarios post-fuego de la región del BAP para aportar a la mejora del Inventario Nacional de Gases de Efecto Invernadero (GEI). Informe Final. Esquel.

Long, J. N., and F. W. Smith. 1984. Relation between size and density in developing stands: A description and possible mechanisms. For Ecol Manage 7:191-206. https://doi.org/10.1016/0378-1127(84)90067-7.

Lusk, C. H. 2004. Leaf area and growth of juvenile temperate evergreens in low light: Species of contrasting shade tolerance change rank during ontogeny. Funct Ecol 18:820-828. https://doi.org/10.1111/j.0269-8463.2004.00897.x.

Magalhães, N. dos S., R. A. Marenco, and M. A. B. Camargo. 2014. Do soil fertilization and forest canopy foliage affect the growth and photosynthesis of Amazonian saplings? Scie Agric 71(1):58-65. https://doi.org/10.1590/S0103-90162014000100008.

Martinez Pastur, G., M. V. Lencinas, P. Peri, and M. Arena. 2007. Photosynthetic plasticity of Nothofagus pumilio seedlings to light intensity and soil moisture. For Ecol Manage 243(2):274-282. https://doi.org/10.1016/j.foreco.2007.03.034.

Martinez Pastur, G. J., P. L Peri, J. M Cellini, M. V. Lencinas, M. Barrera, and H. Ivancich. 2011. Canopy structure analysis for estimating forest regeneration dynamics and growth in Nothofagus pumilio forests. Ann For Sci 68(3):587-594. https://doi.org/10.1007/s13595-011-0059-1.

Müller-Using, B., and F. Schlegel. 1980. The development of Chilean Nothofagus seedlings in a nursery shading experiment at the University of Valdivia. Allgemeine Forst- und Jagdzeitung 151:79-96.

Niinemets, Ü. 2010. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol Res 25:693-714. https://doi.org/10.1007/s11284-010-0712-4.

O’Hara, K. 1988. Stand structure and growing space efficiency following thinning in an even-aged Douglas-fir stand. Can J For Res 18:859-866. https://doi.org/10.1139/x88-132.

O’Hara, K. L. 2015. Multiaged silviculture: managing for complex forest stand structures. Oxford University Press, USA. https://doi.org/10.1093/acprof:oso/9780198703068.001.0001.

O’Hara, K. L., and R. F. Gersonde. 2004. Stocking control concepts in uneven-aged silviculture. Forestry 77:131-143. https://doi.org/10.1093/forestry/77.2.131.

O’Hara, K. L., P. T. Stancioiu, and M. A. Spencer. 2007. Understory stump sprout development under variable canopy density and leaf area in coast redwood. For Ecol Manage 244:76-85. https://doi.org/10.1016/j.foreco.2007.03.062.

Oliver, C., and B. Larson. 1996. Forest Stand Dynamics, Update Edition. Yale School of the Environment Other Publications.

Pafundi, L., M. F. Urretavizcaya, and G. E. Defossé. 2014. improving survival and growth of planted Austrocedrus chilensis seedlings in disturbed patagonian forests of Argentina by managing understory vegetation. Environ Manage 54:1412-1420. https://doi.org/10.1007/s00267-014-0363-2.

Pafundi, L., M. F. Urretavizcaya, and G. E. Defossé. 2016. Micro-environmental changes induced by shape and size of forest openings: Effects on Austrocedrus chilensis and Nothofagus dombeyi seedlings performance in a Pinus contorta plantation of Patagonia, Argentina. For Syst 25(3):e075. https://doi.org/10.5424/fs/2016253-08971.

Palenzuela, S. L., M. M. Amoroso, and S. M. Bogino. 2018. Regeneration dynamics of Austrocedrus chilensis and Nothofagus dombeyi in declining forests. Bosque 39:333-345. https://doi.org/10.4067/S0717-92002018000200333.

Peck, J. E., E. K. Zenner, and B. Palik. 2012. Variation in microclimate and early growth of planted pines under dispersed and aggregated overstory retention in mature managed red pine in Minnesota. Can J For Res 42:279- 290. https://doi.org/10.1139/x11-186.

Puntieri, J., E. Raffaele, P. Martínez, D. Barthélémy, and C. Brion. 1999. Morphological and architectural features of young Nothofagus pumilio (Poepp. and Endl.) Krasser (Fagaceae). Bot J Linn Soc 130:395-410. https://doi.org/10.1111/j.1095-8339.1999.tb00529.x.

Rasband, W. 2018. ImageJ 1.52a. URL: imagej.nih.gov/ij. US National Institutes of

Health: Bethesda, MD, USA.

Rusch, V., and S. A. Varela. 2019. Bases para el manejo de bosques nativos con ganadería en Patagonia Norte : parte I. Buenos Aires: INTA Ediciones. Pp. 160. ISBN: 978-987-8333-17-5 (digital).

Scharenbroch, B. C., and J. G. Bockheim. 2007. Impacts of forest gaps on soil properties and processes in old growth northern hardwood-hemlock forests. Plant Soil 294(1):219-233. https://doi.org/10.1007/s11104-007-9248-y.

Schlatter, J. E. 1994. Requerimientos de sitio para lenga, Nothofagus pumilio (Poepp. et Endl.) Krasser. Bosque 15(2):3-10. https://doi.org/10.4206/bosque.1994.v15n2-01.

Scholz, F. G., S. J. Bucci, and G. Goldstein. 2014. Strong hydraulic segmentation and leaf senescence due to dehydration may trigger die-back in Nothofagus dombeyi under severe droughts: a comparison with the co-occurring Austrocedrus chilensis. Trees 28(5):1475-1487. https://doi.org/10.1007/s00468-014-1050-x.

Schuler, T. M., and F. W. Smith. 1988. Effect of species mix on size/density and leaf-area relations in Southwest pinyon/juniper woodlands. For Ecol Manage 25:211-220. https://doi.org/10.1016/0378-1127(88)90088-6.

Shao, G. 1996. Potential impacts of climate change on a mixed broadleaved-Korean pine forest stand: A gap model approach. Clim Change 34:263-268. https://doi.org/10.1007/BF00224637.

Soto, D. P., P. J. Donoso, D. Uteau, and A. Zúñiga-Feest. 2009. Environmental factors affect the spatial arrangement of survival and damage of outplanted Nothofagus dombeyi seedlings in the chilean andes. Interciencia 34:100-105.

Stancioiu, P. T., and K. L. O’Hara. 2006a. Regeneration growth in different light environments of mixed species, multiaged, mountainous forests of Romania. Eur J For Res 125:151-162. https://doi.org/10.1007/s10342-005-0069-3.

Stancioiu, P. T., and K. L. O’Hara. 2006b. Leaf area and growth efficiency of regeneration in mixed species, multiaged forests of the Romanian Carpathians. For Ecol Manage 222:55-66. https://doi.org/10.1016/j.foreco.2005.10.018.

Stecconi, M. 2006. Variabilidad arquitectural de especies nativas de Nothofagus de la Patagonia. PhD thesis, Universidad Nacional del Comahue, Argentina.

Thiers, O., V. Gerding, and E. Hildebrand. 2008. Renovales de Nothofagus obliqua en centro y sur de Chile: Factores de sitio relevantes para su productividad. Libro de actas de Eco Reuniones. Segunda Reunión sobre los Nothofagus en la Patagonia. Esquel, Chubut, Argentina. Pp. 255-260.

Urretavizcaya, M. F., and G. E. Defossé. 2013. Effects of nurse shrubs and tree shelters on the survival and growth of two Austrocedrus chilensis seedling types in a forest restoration trial in semiarid Patagonia, Argentina. Ann For Sci 70:21-30. https://doi.org/10.1007/s13595-012-0234-z.

Urretavizcaya, M. F., and G. E. Defossé. 2019. Restoration of burned and post-fire logged Austrocedrus chilensis stands in Patagonia: Effects of competition and environmental conditions on seedling survival and growth. Int J Wildland Fire 28:365-376. https://doi.org/10.1071/WF18154.

Valladares, F., I. Aranda, and D. Sánchez-Gómez. 2004. La luz como factor ecológico y evolutivo para las plantas y su interacción con el agua. Pp. 335-369 in Ecología del bosque mediterráneo en un mundo cambiante.

Veblen, T., and D. Lorenz. 1987. Post fire stand development of Austrocedrus - Nothofagus forest in Patagonia. Vegetatio 73:113-126.

Veblen, T. T. 1989. Tree regeneration responses to gap along a transandean gradient. Ecology 70(3):541-543. https://doi.org/10.2307/1940197.

Veblen, T. T., J. J. Armesto, B. R. Burns, T. Kitzberger, A. Lara, B. León, and K. R. Young. 1995. The ecology of the conifers of southern South America. Ecology of the Southern Conifers. Melbourne. Victoria.

Veblen, T. T., T. Kitzberger, and R. Villalba. 2004. Nuevos paradigmas en ecología y su influencia sobre el conocimiento de la dinámica de los bosques del sur de Argentina y Chile. Pp. 1-48 in M. F. Arturi, J. L. Frangi and J. F. Goya (eds.). Ecología y manejo de bosques de Argentina. Editorial de la Universidad Nacional de La Plata, La Plata, Argentina. ISBN: 950-34-0307-3.

von Arx, G., E. G Pannatier, A. Thimonier, and M. Rebetez. 2013. Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. J Ecol 101(5):1201-1213. https://doi.org/10.1111/1365-2745.12121.

Wardle, J. 1984. The New Zealand Beeches. New Zealand Forest Service, Christchurch.

Waring, R. H. 1983. Estimating forest growth and efficiency in relation to canopy leaf area. Adv Ecol Res 13:327-354. https://doi.org/10.1016/S0065-2504(08)60111-7.

Whitmore, T. C. 1989. Canopy gaps and the two major groups of forest trees. Ecology 70(3):536-538. https://doi.org/10.2307/1940195.

Weinberger, P., and C. Ramírez. 2001. Microclima y regeneración natural de Raulí, Roble y Coigüe (Nothofagus alpina, N. obliqua y N. dombeyi). Bosque 22:11-26. https://doi.org/10.4206/bosque.2001.v22n1-02.

Relación entre el índice de área foliar del dosel y el crecimiento de los renovales de coihue y de ciprés de la cordillera

Published

2022-01-24

How to Cite

Caselli, M., Loguercio, G. A., Urretavizcaya, M. F., & Defossé, G. E. (2022). Coihue and andean cypress saplings growth in relation to canopy leaf area index. Ecología Austral, 32(1), 136–150. https://doi.org/10.25260/EA.22.32.1.0.1857