New saline wetlands in the dry agricultural plains of Argentina: how they are, where do they occur and what to do with them?
DOI:
https://doi.org/10.25260/EA.22.32.3.0.1870Keywords:
Dryland salinity, Ecohydrology, Ecological Restoration, TamarixAbstract
In the last decades and as a result of the rapid transformation of the terrestrial ecosystems, a new category called ‘neo-ecosystems’ has emerged. In the dry plains of Argentina, the agricultural expansion replacing forests, woodlands and natural grasslands has generated water surpluses at the regional scale. This water excess has favoured the development of neo-wetlands characterized by shallow water tables, frequent waterlogging and progressive salinization. In this work, we characterize these neo-ecosystems that spontaneously occupy these degraded environments by reviewing bibliography in the Dry Chaco-Espinal area and by taking the El Morro basin in the province of San Luis as a case of study. Through a temporal analysis of high-resolution images, we found that in the last 13 years, the neo-wetlands of the El Morro basin have tripled their extension, covering more than 15% of the lower basin, mainly in depressed areas of the landscape where salinization has been more widespread. These neo-wetlands showed lower NDVI-LANDSAT values than the surrounding forests (0.44±0.04 vs. 0.35±0.09) but similar to the annual crops (neo-wetlands 0.35±0.09 and crops 0.37±0.13). Compared to the crops, the neo-wetlands presented longer growing seasons (241±54 days vs. 194±54 days, for neo-wetlands and crops, respectively), showing revegetation with saline tolerant species adapted to the new environment. Finally, we propose guidelines for the restoration and use of these neo-ecosystems in order to recover their functionality but also their ecological-productive value.
References
Aizen, M. A., L. Garibaldi, and M. Dondo. 2009. Expansión de la soja y diversidad de la agricultura Argentina. Ecología Austral 19:45-54.
Amdan, M. L., R. Aragón, E. G. Jobbágy, J. N. Volante, and J. M. Paruelo. 2013. Onset of deep drainage and salt mobilization following forest clearing and cultivation in the Chaco plains (Argentina). Water Resources Research 49:6601-6612. https://doi.org/10.1002/wrcr.20516.
Andrade-Díaz, M. S., J. A. Sarquis, B. A. Loiselle, A. R. Giraudo, and J. M. Díaz-Gómez. 2019. Expansion of the agricultural frontier in the largest South American Dry Forest: Identifying priority conservation areas for snakes before everything is lost. PloS ONE 14:e0221901. https://doi.org/10.1371/journal.pone.0221901.
Barrett-Lennard, E. G., C. V. Malcolm, and A. Bathgate. 2003. Saltland Pastures in Australia, a practical guide. Second edition. Land, Water and Wool Sustainable Grazing on Saline Lands Sub-program, Canberra, Australia. URL: researchrepository.murdoch.edu.au/id/eprint/43299.
Barrett-Lennard, E. G., and S. N. Shabala. 2013. The waterlogging/salinity interaction in higher plants revisited – focusing on the hypoxia-induced disturbance to K+ homeostasis. Functional Plant Biology 40:872-882. https://doi.org/10.1071/FP12235.
Basualdo, M., N. Huykman, J. N. Volante, J. M. Paruelo, and G. Piñeiro. 2019. Lost forever? Ecosystem functional changes occurring after agricultural abandonment and forest recovery in the semiarid Chaco forests. Science of The Total Environment 650:1537-1546. https://doi.org/10.1016/j.scitotenv.2018.09.001.
Baumann, M., I. Gasparri, M. Piquer‐Rodríguez, G. Gavier Pizarro, P. Griffiths, P. Hostert, and T. Kuemmerle. 2017. Carbon emissions from agricultural expansion and intensification in the Chaco. Global Change Biology 23:1902-1916. https://doi.org/10.1111/gcb.13521.
Benzaquen, L., D. E. Blanco, R. Bo, P. Kandus, G. Lingua, P. Minotti, and R. Quintana. 2017. Regiones de Humedales de la Argentina. Ministerio de Ambiente y Desarrollo Sustentable, Fundación para la Conservación y el Uso Sustentable de los Wetlands International, Universidad Nacional de San Martín y Universidad de Buenos Aires, Buenos Aires, Argentina. Pp. 334.
Bertram, N., and S. Chiacciera. 2013. Ascenso de napas en la Región Pampeana: ¿Consecuencias de los cambios del uso de la tierra?. Informe técnico. INTA, Buenos Aires, Argentina. URL: inta.gob.ar/sites/default/files/script-tmp-inta_napas_mjz_13.pdf.
Bogino, S. M., and E. G. Jobbágy. 2011. Climate and groundwater effects on the establishment, growth and death of Prosopis caldenia trees in the Pampas (Argentina). Forest Ecology and Management 262:1766-1774. https://doi.org/10.1016/j.foreco.2011.07.032.
Chapin, F. S., and A. M. Starfield. 1997. Time lags and novel ecosystems in response to transient climatic change in arctic Alaska. Climatic Change 35:449-461. https://doi.org/10.1023/A:1005337705025.
Contreras, S., C. Santoni, and E. G. Jobbágy. 2013. Abrupt watercourse formation in a semiarid sedimentary landscape of central Argentina: the roles of forest clearing, rainfall variability and seismic activity. Ecohydrology 6:794-805. https://doi.org/10.1002/eco.1302.
Crutzen, P.J. 2006. The “Anthropocene". Pp. 13-18 in E. Ehlers and T. Krafft (eds.). Earth System Science in the Anthropocene. Springer Berlin Heidelberg. Berlin, Heidelberg, Germany. https://doi.org/10.1007/3-540-26590-2_3.
Dolling, P., S. Asseng, M. Robertson, and M. Ewing. 2007. Water excess under simulated lucerne–wheat phased systems in Western Australia. Australian Journal of Agricultural Research 58:826-838. https://doi.org/10.1071/AR06048.
Ernst, O. 2004. Leguminosas como cultivo de cobertura. Informaciones Agronómicas del Cono Sur 21:16-21.
Galván, M. J., and A. D. Collado. 2009. Escurrimientos hídricos superficiales en la cuenca hidrográfica de “El Morro”, provincia de San Luis. Información Técnica 175. Centro Regional La Pampa-San Luis–INTA, San Luis, Argentina.
Gasparri, N. I., and H. R. Grau. 2009. Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972-2007). Forest Ecology and Management 258:913-921. https://doi.org/10.1016/j.foreco.2009.02.024.
George, R., D. McFarlane, and B. Nulsen. 1997. Salinity threatens the viability of agriculture and ecosystems in Western Australia. Hydrogeology Journal 5:6-21. https://doi.org/10.1007/s100400050103.
George, R., R. Nulsen, R. Ferdowsian, and G. Raper. 1999. Interactions between trees and groundwater in recharge and discharge areas- A survey of Western Australian sites. Agricultural Water Management 39:91-113. https://doi.org/10.1016/S0378-3774(98)00073-0.
Giménez, R., J. Mercau, M. Nosetto, R. Páez, and E. Jobbágy. 2016. The ecohydrological imprint of deforestation in the semiarid Chaco: insights from the last forest remnants of a highly cultivated landscape. Hydrological Processes 30:2603-2616. https://doi.org/10.1002/hyp.10901.
Ginzburg, R., J. Adámoli, P. Herrera, and S. Torrella. 2005. Los Humedales del Chaco: clasificación, inventario y mapeo a escala regional. Miscelánea 14:121-138.
Gómez Carella, D. S., K. L. Speziale, and S. A. Lambertucci. 2019. Estado del conocimiento en ecología y conservación de los roquedales de la Argentina: Una revisión. Ecología Austral 29:315-328. https://doi.org/10.25260/EA.19.29.3.0.860.
Gordon, L. J., G. D. Peterson, and E. M. Bennett. 2008. Agricultural modifications of hydrological flows create ecological surprises. Trends in Ecology and Evolution 23:211-219. https://doi.org/10.1016/j.tree.2007.11.011.
Grau, H. R., T. M. Aide, and N. I. Gasparri. 2005. Globalization and soybean expansion into semiarid ecosystems of Argentina. AMBIO: A Journal of the Human Environment 34:265-266. https://doi.org/10.1579/0044-7447-34.3.265.
Hansun, S. 2013. A new approach of moving average method in time series analysis. Pp. 1-4 in 2013 Conference on New Media Studies (CoNMedia). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/CoNMedia.2013.6708545.
Hart, C. R., L. D. White, A. McDonald, and Z. Sheng. 2005. Saltcedar control and water salvage on the Pecos River, Texas, 1999-2003. Journal of Environmental Management 75:399-409. https://doi.org/10.1016/j.jenvman.2004.11.023.
Hillel, D. 2000. Salinity management for sustainable irrigation: integrating science, environment, and economics. World Bank Publications, Washington, D.C., USA. https://doi.org/10.1596/0-8213-4773-X.
Hobbs, R. J., S. Arico, J. Aronson, J. S. Baron, P. Bridgewater, et al. 2006. Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography 15:1-7. https://doi.org/10.1111/j.1466-822X.2006.00212.x.
Hobbs, R. J., E. Higgs, and J. A. Harris. 2009. Novel ecosystems: implications for conservation and restoration. Trends in Ecology and Evolution 24:599-605.https://doi.org/10.1016/j.tree.2009.05.012.
Holl, K. 2020. Primer of Ecological Restoration. Island Press. Washington, D.C., USA.
Jayawickreme, D. H., C. S. Santoni, J. H. Kim, E. G. Jobbágy, and R. B. Jackson. 2011. Changes in hydrology and salinity accompanying a century of agricultural conversion in Argentina. Ecological Applications 21:2367-2379.https://doi.org/10.1890/10-2086.1.
Jobbágy, E. G., M. D. Nosetto, C. S. Santoni, and G. Baldi. 2008. El desafío ecohidrológico de las transiciones entre sistemas leñosos y herbáceos en la llanura chaco-pampeana. Ecología Austral 18:305-322.
Jobbágy, E. J., M. D. Nosetto, H. Bernasconi, J. C. Colazo, M. J. Galvan, J. L. Mercau, C. Saenz, E. R. Colazo, C. Larrusse, A. A. Marchi, O. A. Barbosa, A. Giaccardi, M. M. Hellmers, and D. Martinez Alvarez (eds.). 2015. Los nuevos cursos de agua en la cuenca del Morro: descripción del proceso y pautas para su gestión. INTA, San Luis, Argentina.
Jobbágy, E. G., R. Giménez, V. Marchesini, Y. Diaz, D. H. Jayawickreme, and M. D. Nosetto. 2021a. Salt Accumulation and Redistribution in the Dry Plains of Southern South America: Lessons from Land Use Changes. Pp. 51-70 in E. Taleisnik and R. S. Lavado (eds.). Saline and Alkaline Soils in Latin America. Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-030-52592-7_3.
Jobbágy, E. G., S. Lorenzo, N. Buono, R. Páez, Y. Diaz, et al. 2021b. Plants versus streams: Their groundwater‐mediated competition at “El Morro”, a developing catchment in the dry plains of Argentina. Hydrological Processes 35:e14188. https://doi.org/10.1002/hyp.14188.
Jönsson, P., and L. Eklundh. 2004. TIMESAT - a program for analysing time-series of satellite sensor data. Computers and Geosciences 30:833-845. https://doi.org/10.1016/j.cageo.2004.05.006.
Kandus, P., and P. Minotti (eds.). 2018. Propuesta de un marco conceptual y lineamientos metodológicos para el Inventario Nacional de Humedales. Informe final. Documento Rector del Inventario Nacional de Humedales DI-2018-3-APN-SSPYOAD#MAD. 3iA, UNSAM, San Martín, Buenos Aires, Argentina.
Lugo, A. E. 2015. Forestry in the Anthropocene. Science 349:771-771. URL: science.org/doi/10.1126/science.aad2208.
Lugo, A. E., O. J. Abelleira Martínez, E. Medina, G. Aymard, and T. Heartsill Scalley. 2020. Chapter Two - Novelty in the tropical forests of the 21st century. Pp. 53-116 in A. J. Dumbrell, E. C. Turner and T. M. Fayle (eds.). Advances in Ecological Research. Academic Press, London, United Kingdom. https://doi.org/10.1016/bs.aecr.2020.01.008.
Marchesini, V. A., R. Giménez, M. D. Nosetto, and E. G. Jobbágy. 2017. Ecohydrological transformation in the Dry Chaco and the risk of dryland salinity: Following Australia's footsteps? Ecohydrology 10:e1822. https://doi.org/10.1002/eco.1822.
Middleton, N., and D. Thomas. 1997. World Atlas of Desertification. Second Edition. UNEP, London, England, United Kindomg. https://wedocs.unep.org/20.500.11822/30300.
Milton, S. J. 2003. ‘Emerging ecosystems’ - a washing-stone for ecologists, economists and sociologists?: news and views. South African Journal of Science 99:404-406.
Morello, J., S. Matteucci, A. Rodriguez, and M. Silva. 2018. Ecorregiones y Complejos Ecosistémicos Argentinos. Segunda edición. Orientación Gráfica Editora, Buenos Aires, Argentina.
Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment 25:239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x.
Natale, E. S., S. M. Zalba, H. E. Reinoso, and G. Damilano. 2012. Assessing invasion process through pathway and vector analysis: Case of saltcedar (Tamarix spp.). Regional Euro-Asian Biological Invasions Centre, Management of Biological Invasions 3:37-44. https://doi.org/10.1016/j.jaridenv.2010.05.023.
Nosetto, M. D., E. G. Jobbágy, R. B. Jackson, and G. A. Sznaider. 2009. Reciprocal influence of crops and shallow ground water in sandy landscapes of the Inland Pampas. Field Crops Research 113:138-148. https://doi.org/10.1016/j.fcr.2009.04.016.
Nosetto, M. D., E. G. Jobbágy, A. B. Brizuela, and R. B. Jackson. 2012. The hydrologic consequences of land cover change in central Argentina. Agriculture, Ecosystems and Environment 154:2-11. https://doi.org/10.1016/j.agee.2011.01.008.
Nosetto, M. D., R. A. Paez, S. I. Ballesteros, and E. G. Jobbágy. 2015. Higher water-table levels and flooding risk under grain vs. livestock production systems in the subhumid plains of the Pampas. Agriculture, Ecosystems and Environment 206:60-70. https://doi.org/10.1016/j.agee.2015.03.009.
Pensiero, J. F., J. M. Zabala, L. Marinoni, and G. Richard. 2017. Recursos fitogenéticos forrajeros nativos y naturalizados (RFNyN) para suelos salinos de la región chaqueña de la Argentina. Pp. 373-418 in E. Taleisnik and R. S. Lavado (eds.). Ambientes Salinos y Alcalinos de Argentina. Recursos y aprovechamiento productivo. Universidad Católica de Córdoba, Orientación Gráfica Editora, Buenos Aires, Argentina.
Pereyra, M. A., D. S. Fernández, E. R. Marcial, and M. E. Puchulu. 2020. Agricultural land degradation by piping erosion in Chaco Plain, Northwestern Argentina. CATENA 185:104295. https://doi.org/10.1016/j.catena.2019.104295.
Pretelli, M. G., J. P. Isacch, and D. A. Cardoni. 2018. La relación especies-área para aves especialistas versus oportunistas de los pastizales de la Pampa depende de la matriz de paisaje circundante. Ardeola 65:3-23. https://doi.org/10.13157/arla.65.1.2018.ra1.
Ríos, L. D. 2020. Geomorfología de la subcuenca del Río Nuevo, San Luis, Argentina: implicancias sobre los depósitos de crecida y su revegetación. Tesis de licenciatura. Departamento de Geología, Universidad Nacional de San Luis, San Luis, Argentina. Pp.166.
Rosa, E., C. Bianco, S. Mercado, and E. Scappini. 2005. Poáceas de San Luis. Distribución e importancia económica. Primera edición. Nueva Editorial Universitaria, Universidad Nacional de San Luis, San Luis, Argentina.
RStudio Team. 2020. RStudio: Integrated Development for R. RStudio, PBC., Boston, MA. URL: rstudio.com.
Saenz, C. A., N. E. Rusoci, and J. C. Colazo (eds.). 2016. Balance hídrico de diferentes escenarios en la cuenca El Morro. Infome técnico 192, EEA San Luis, ISSN 0327-425X. Ediciones INTA, Buenos Aires, Argentina.
Sala, A., S. D. Smith, and D. A. Devitt. 1996. Water use by Tamarix ramosissima and associated phreatophytes in a Mojave Desert floodplain. Ecological Applications 6:888-898. https://doi.org/10.2307/2269492.
Santoni, C. S., E. G. Jobbágy, and S. Contreras. 2010. Vadose zone transport in dry forests of central Argentina: role of land use. Water Resources Research 46:1-12. https://doi.org/10.1029/2009WR008784.
Svejcar, L. N., and O. A. Kildisheva. 2017. The age of restoration: challenges presented by dryland systems. Plant Ecology 218:1-6. https://doi.org/10.1007/s11258-016-0694-6.
Trabucco, A., and R. J. Zomer. 2009. Global Aridity Index (Global-Aridity) and Global Potential Evapo-Transpiration (Global-PET) Geospatial Database. CGIAR Consortium for Spatial Information. https://doi.org/10.6084/m9.figshare.7707605.v3.
Tripaldi, A., and S. L. Forman. 2007. Geomorphology and chronology of Late Quaternary dune fields of western Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 251:300-320. https://doi.org/10.1016/j.palaeo.2007.04.007.
Viglizzo, E. F., E. G. Jobbágy, L. Carreño, F. C. Frank, R. Aragón, et al. 2009. The dynamics of cultivation and floods in arable lands of Central Argentina. Hydrology and Earth System Sciences 13:491-502. https://doi.org/10.5194/hess-13-491-2009.
Villagra, P. E., C. B. Passera, C. Greco, C. Sartor, J. N. Aranibar, P. A. Meglioli, J. A. Álvarez, L. Allegretti, M. E. Fernández, M. A. Cony, P. C. Kozub, and C. Vega Riveros. 2017. Uso de Plantas Nativas en la restauración y recuperación productiva de ambientes salinos en las zonas áridas de la región del Monte, Argentina. Pp.419-444 in E. Taleisnik and R. S. Lavado (eds.). Ambientes Salinos y Alcalinos de Argentina. Recursos y aprovechamiento productivo. Universidad Católica de Córdoba, Orientación Gráfica Editora, Buenos Aires, Argentina.
Walker, G. R., M. Gilfedder, and J. Williams. 1999. Effectiveness of current farming systems in the control of dryland salinity. CSIRO, CSIRO Land and Water, Canberra, Australia. URL: clw.csiro.au/publications/Dryland.pdf.
Zeballos, S. R., M. A. Giorgis, M. R. Cabido, A. T. R. Acosta, M. d. R. Iglesias, and J. J. Cantero. 2020. The lowland seasonally dry subtropical forests in central Argentina: vegetation types and a call for conservation. Vegetation Classification and Survey 1:87-102. https://doi.org/10.3897/VCS/2020/38013.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Yesica R. Diaz, Esteban G. Jobbágy, Victoria A. Marchesini
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors retain their rights as follows: 1) by granting the journal the right to its first publication, and 2) by registering the published article with a Creative Commons Attribution License (CC-BY 4.0), which allows authors and third parties to view and use it as long as they clearly mention its origin (citation or reference, including authorship and first publication in this journal). Authors can make other non-exclusive distribution agreements as long as they clearly indicate their origin and are encouraged to widely share and disseminate the published version of their work.