Las marismas del sudoeste atlántico como sistemas modelo en ecología de comunidades y ecosistemas

Autores/as

  • Pedro Daleo Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET
  • Juan Alberti Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET
  • Diana I. Montemayor Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET
  • Micaela Giorgini Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP). Mar del Plata, Buenos Aires, Argentina
  • Florencia Botto Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET
  • Jesús Pascual Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET
  • Camila Rocca Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET
  • Oscar Iribarne Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET

DOI:

https://doi.org/10.25260/EA.22.32.2.1.1882

Palabras clave:

reguladores de la estructura de comunidades, teoría ecológica, funciones ecosistémicas

Resumen

El uso de ciertas especies como sistemas modelo es común en algunas ramas de la biología (e.g., fisiología, biología molecular, genética). De manera similar, existen ecosistemas muy usados como modelo en ecología. Las marismas, por ejemplo, son sistemas relativamente simples, lo que los hace ideales para realizar experimentos manipulativos de campo. Por ello, son muy utilizadas para entender los determinantes de la estructura y el funcionamiento de comunidades y ecosistemas. Históricamente, la influencia de trabajos realizados en marismas tuvo gran impacto sobre el desarrollo de la ecología de comunidades como disciplina. Sin embargo, la mayor parte de los trabajos que dieron lugar a teorías y modelos generales provienen de unos pocos lugares, por lo que muchas veces, al querer ponerlos a prueba en otros sitios geográficos, los resultados obtenidos parecen no ajustarse a las predicciones. En este artículo hacemos una revisión de algunos trabajos, realizados en las marismas del sudoeste Atlántico durante más de 25 años, que ayudaron no sólo a que entendamos mejor el funcionamiento de las marismas en sí, sino también a extender el conocimiento más allá de estos sistemas en particular. En esta revisión mostramos cómo los resultados obtenidos en las marismas del SO Atlántico contribuyeron al entendimiento de 1) los efectos aislados e interactivos de factores bióticos y abióticos sobre la distribución de especies y hasta la estabilidad de los ecosistemas, 2) el rol integral de especies que pueden actuar simultáneamente como ingenieras y como consumidoras, 3) el balance entre procesos neutrales y determinísticos como reguladores de la estructura comunitaria, y 4) la regulación de los flujos entre ecosistemas. Sin embargo, estas marismas tienen mucho más para ofrecer, no sólo como modelos conceptuales que ayudan a calmar nuestra curiosidad intelectual, sino como ecosistemas clave en la provisión de servicios ecosistémicos.

Citas

Adam, P. 2002. Saltmarshes in a time of change. Environmental Conservation 29:39-61. https://doi.org/10.1017/S0376892902000048.

Alberti, J., J. Cebrian, A. Méndez Casariego, A. Canepuccia, M. Escapa, and O. Iribarne. 2011. Effects of nutrient enrichment and crab herbivory on a SW Atlantic salt marsh productivity. Journal of Experimental Marine Biology and Ecology 405:99-104. https://doi.org/10.1016/j.jembe.2011.05.023.

Alberti, J., P. Daleo, E. Fanjul, M. Escapa, F. Botto, and O. Iribarne. 2015. Can a single species challenge paradigms of salt marsh functioning? Estuaries and Coasts 38:1178-1188. https://doi.org/10.1007/s12237-014-9836-z.

Alberti, J., M. Escapa, P. Daleo, O. Iribarne, B. R. Silliman, and M. Bertness. 2007a. Local and geographic variation in grazing intensity by herbivorous crabs in SW Atlantic salt marshes. Marine Ecology Progress Series 349:235-243. https://doi.org/10.3354/meps07089.

Alberti, J., M. Escapa, O. Iribarne, B. Silliman, and M. Bertness. 2008. Crab herbivory regulates plant facilitative and competitive processes in Argentinean marshes. Ecology 89:155-164. https://doi.org/10.1890/07-0045.1.

Alberti, J., A. Méndez Casariego, P. Daleo, E. Fanjul, B. Silliman, M. Bertness, and O. Iribarne. 2010. Abiotic stress mediates top-down and bottom-up control in a Southwestern Atlantic salt marsh. Oecologia 163:181-191. https://doi.org/10.1007/s00442-009-1504-9.

Alberti, J., D. Montemayor, F. Álvarez, A. Méndez Casariego, T. Luppi, A. Canepuccia, J. P. Isacch, and O. Iribarne. 2007b. Changes in rainfall pattern affect crab herbivory rates in a SW Atlantic salt marsh. Journal of Experimental Marine Biology and Ecology 353:126-133. https://doi.org/10.1016/j.jembe.2007.09.007.

Bakker, J. P. 1978. Changes in a salt-marsh vegetation as a result of grazing and mowing - A five-year study of permanent plots. Vegetatio 38:77-87. https://doi.org/10.1007/BF00052038.

Bakker, J. P. 1985. The impact of grazing on plant communities, plant populations and soil conditions on salt marshes. Vegetatio 62:391-398. https://doi.org/10.1007/BF00044766.

Barbier, E. B., S. D. Hacker, C. Kennedy, E. W. Koch, A. C. Stier, and B. R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81:169-193. https://doi.org/10.1890/10-1510.1.

Bertness, M., and R. M. Callaway. 1994. Positive interactions in communities. Trends in Ecology and Evolution 9:191-193. https://doi.org/10.1016/0169-5347(94)90088-4.

Bertness, M. D. 1985. Fiddler crab regulation of Spartina alterniflora production on a New England salt marsh. Ecology 66:1042-1055. https://doi.org/10.2307/1940564.

Bertness, M. D. 1991. Zonation of Spartina patens and Spartina alterniflora in New England salt marsh. Ecology 72:138-148. https://doi.org/10.2307/1938909.

Bertness, M. D., and A. M. Ellison. 1987. Determinants of pattern in a New England salt marsh plant community. Ecological Monographs 57:129-147. https://doi.org/10.2307/1942621.

Bertness, M. D., and G. H. Leonard. 1997. The role of positive interactions in communities: lessons from intertidal habitats. Ecology 78:1976-1989. https://doi.org/10.1890/0012-9658(1997)078[1976:TROPII]2.0.CO;2.

Bertness, M., B. R. Silliman, and R. Jefferies. 2004. Salt marshes under siege. American Scientist 92:54-61. https://doi.org/10.1511/2004.1.54.

Bortolus, A., and O. O. Iribarne. 1999. The effect of the southwestern Atlantic burrowing crab Chasmagnathus granulata on a Spartina salt-marsh. Marine Ecology Progress Series 178:79-88. https://doi.org/10.3354/meps178079.

Bortolus, A., P. Laterra, and O. Iribarne. 2004. Crab-mediated phenotypic changes in Spartina densiflora Brong. Estuarine, Coastal and Shelf Science 59:97-107. https://doi.org/10.1016/j.ecss.2003.06.005.

Bortolus, A., E. Schwindt, and O. Iribarne. 2002. Positive Plant-Animal Interactions in the High Marsh of an Argentinean Coastal Lagoon. Ecology 83:733-742. https://doi.org/10.1890/0012-9658(2002)083[0733:PPAIIT]2.0.CO;2.

Botto, F., I. Valiela, O. Iribarne, P. Martinetto, and J. Alberti. 2005. Impact of burrowing crabs on C and N sources, control, and transformations in sediments and food webs of SW Atlantic estuaries. Marine Ecology Progress Series 293:155-164. https://doi.org/10.3354/meps293155.

Bromberg Gedan, K., B. R. Silliman, and M. D. Bertness. 2009. Centuries of human-driven change in salt marsh ecosystems. Annual Review of Marine Science 1:117-141. https://doi.org/10.1146/annurev.marine.010908.163930.

Bruno, J. F., J. J. Stachowicz, and M. D. Bertness. 2003. Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution 18:119-125. https://doi.org/10.1016/S0169-5347(02)00045-9.

Chase, J. M. 2007. Drought mediates the importance of stochastic community assembly. Proceedings of the National Academy of Sciences of the United States of America 104:17430-17434. https://doi.org/10.1073/pnas.0704350104.

Chase, J. M. 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328:1388-1391. https://doi.org/10.1126/science.1187820.

Chase, J. M., and J. A. Myers. 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B: Biological Sciences 366:2351-2363. https://doi.org/10.1098/rstb.2011.0063.

Childers, D. L., J. W. Day, and H. N. Mckellar. 2000. Twenty More Years of Marsh and Estuarine Flux Studies: Revisiting Nixon (1980). Pp. 391-423 in M. P. Weinstein and D. A. Kreeger (eds.). Concepts and Controversies in Tidal Marsh Ecology. Springer Netherlands, Dordrecht. https://doi.org/10.1007/0-306-47534-0_18.

Clements, F. E. 1916. Plant succession: an analysis of the development of vegetation. Carnegie Institution of Washington. https://doi.org/10.5962/bhl.title.56234.

Colombano, D. D., T. B. Handley, T. A. O’Rear, J. R. Durand, and P. B. Moyle. 2021. Complex Tidal Marsh Dynamics Structure Fish Foraging Patterns in the San Francisco Estuary. Estuaries and Coasts 44:1604-1618. https://doi.org/10.1007/s12237-021-00896-4.

Connell, J. H. 1961. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42:710-723. https://doi.org/10.2307/1933500.

Connell, J. H., and R. O. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist 111:1119-1144. https://doi.org/10.1086/283241.

Coverdale, T. C., C. P. Brisson, E. W. Young, S. F. Yin, J. P. Donnelly, and M. D. Bertness. 2014. Indirect human impacts reverse centuries of carbon sequestration and salt marsh accretion. PLoS ONE 9:e93296. https://doi.org/10.1371/journal.pone.0093296.

Daleo, P., J. Alberti, C. M. Bruschetti, P. Martinetto, J. Pascual, and O. Iribarne. 2017. Herbivory and presence of a dominant competitor interactively affect salt marsh plant diversity. Journal of Vegetation Science 28:1178-1186. https://doi.org/10.1111/jvs.12574.

Daleo, P., J. Alberti, C. M. Bruschetti, J. Pascual, O. Iribarne, and B. R. Silliman. 2015. Physical stress modifies top-down and bottom-up forcing on plant growth and reproduction in a coastal ecosystem. Ecology 96:2147-2156. https://doi.org/10.1890/14-1776.1.

Daleo, P., J. Alberti, A. Jumpponen, A. Veach, F. Ialonardi, O. Iribarne, and B. Silliman. 2018. Nitrogen enrichment suppresses other environmental drivers and homogenizes salt marsh leaf microbiome. Ecology 99:1411-1418. https://doi.org/10.1002/ecy.2240.

Daleo, P., J. Alberti, J. Pascual, A. Canepuccia, and O. Iribarne. 2014. Herbivory affects salt marsh succession dynamics by suppressing the recovery of dominant species. Oecologia 175:335-343. https://doi.org/10.1007/s00442-014-2903-0.

Daleo, P., E. Fanjul, A. Méndez Casariego, B. R. Silliman, M. D. Bertness, and O. Iribarne. 2007. Ecosystem engineers activate mycorrhizal mutualism in salt marshes. Ecology Letters 10:902-908. https://doi.org/10.1111/j.1461-0248.2007.01082.x.

Daleo, P., and O. Iribarne. 2009. The burrowing crab Neohelice granulata affects the root strategies of the cordgrass Spartina densiflora in SW Atlantic salt marshes. Journal of Experimental Marine Biology and Ecology 373:66-71. https://doi.org/10.1016/j.jembe.2009.03.005.

Daleo, P., D. I. Montemayor, E. Fanjul, J. Alberti, C. M. Bruschetti, P. Martinetto, J. Pascual, and O. Iribarne. 2020. Dominance by Spartina densiflora slows salt marsh litter decomposition. Journal of Vegetation Science 31:1182-1192. https://doi.org/10.1111/jvs.12920.

Daleo, P., B. Silliman, J. Alberti, M. Escapa, A. Canepuccia, N. Peña, and O. Iribarne. 2009. Grazer facilitation of fungal infection and the control of plant growth in south-western Atlantic salt marshes. Journal of Ecology 97:781-787. https://doi.org/10.1111/j.1365-2745.2009.01508.x.

Davy, A. J., J. P. Bakker, and M. E. Figueroa. 2009. Human modification of European salt marshes. Pp. 311-336 in B. R. Silliman, E. D. Grosholz and M. D. Bertness (eds.). Human impacts on salt marshes: a global perspective. University of California Press, Berkeley, California, USA.

Dini-Andreote, F., J. C. Stegen, J. D. van Elsas, and J. F. Salles. 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences of the United States of America 112:E1326-E1332. https://doi.org/10.1073/pnas.1414261112.

Duarte, C. M., I. J. Losada, I. E. Hendriks, I. Mazarrasa, and N. Marbà. 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change 3:961-968. https://doi.org/10.1038/nclimate1970.

Escapa, M., G. M. E. Perillo, and O. Iribarne. 2015. Biogeomorphically driven salt pan formation in Sarcocornia-dominated salt-marshes. Geomorphology 228:147-157. https://doi.org/10.1016/j.geomorph.2014.08.032.

Ewanchuk, P. J., and M. D. Bertness. 2003. Recovery of a northern New England salt marsh plant community from winter icing. Oecologia 136:616-626. https://doi.org/10.1007/s00442-003-1303-7.

Ewanchuk, P. J., and M. D. Bertness. 2004. Structure and organization of a northern New England salt marsh plant community. Journal of Ecology 92:72-85. https://doi.org/10.1111/j.1365-2745.2004.00838.x.

Fanjul, E., M. A. Grela, and O. Iribarne. 2007. Effects of the dominant SW Atlantic intertidal burrowing crab Chasmagnathus granulatus on sediment chemistry and nutrient distribution. Marine Ecology Progress Series 341:177-190. https://doi.org/10.3354/meps341177.

Farrell, T. M. 1991. Models and mechanisms of succession: an example from a rocky intertidal community. Ecological Monographs 61:95-113. https://doi.org/10.2307/1943001.

Feagin, R. A., J. Figlus, J. C. Zinnert, J. Sigren, M. L. Martínez, R. Silva, W. K. Smith, D. Cox, D. R. Young, and G. Carter. 2015. Going with the flow or against the grain? The promise of vegetation for protecting beaches, dunes, and barrier islands from erosion. Frontiers in Ecology and the Environment 13:203-210. https://doi.org/10.1890/140218.

Fenchel, T., and B. J. Finlay. 2004. The Ubiquity of Small Species: Patterns of Local and Global Diversity. BioScience 54:777-784. https://doi.org/10.1641/0006-3568(2004)054[0777:TUOSSP]2.0.CO;2.

Graff, P., M. R. Aguiar, and E. J. Chaneton. 2007. Shifts in positive and negative plant interactions along a grazing intensity gradient. Ecology 88:188-199. https://doi.org/10.1890/0012-9658(2007)88[188:SIPANP]2.0.CO;2.

Gutiérrez, J. L., C. G. Jones, P. M. Groffman, S. E. G. Findlay, O. O. Iribarne, P. D. Ribeiro, and C. M. Bruschetti. 2006. The Contribution of Crab Burrow Excavation to Carbon Availability in Surficial Salt-marsh Sediments. Ecosystems 9:647-658. https://doi.org/10.1007/s10021-006-0135-9.

Hautier, Y., P. A. Niklaus, and A. Hector. 2009. Competition for light causes plant biodiversity loss after eutrophication. Science 324:636-638. https://doi.org/10.1126/science.1169640.

He, Q., A. H. Altieri, and B. Cui. 2015. Herbivory drives zonation of stress-tolerant marsh plants. Ecology 96:1318-1328. https://doi.org/10.1890/14-0937.1.

He, Q., and B. R. Silliman. 2019. Climate change, human impacts, and coastal ecosystems in the anthropocene. Current Biology 29:R1021-R1035. https://doi.org/10.1016/j.cub.2019.08.042.

He, Q., B. R. Silliman, Z. Liu, and B. Cui. 2017. Natural enemies govern ecosystem resilience in the face of extreme droughts. Ecology Letters 20:194-201. https://doi.org/10.1111/ele.12721.

Howison, R. A., H. Olff, J. van de Koppel, and C. Smit. 2017. Biotically driven vegetation mosaics in grazing ecosystems: the battle between bioturbation and biocompaction. Ecological Monographs 87:363-378. https://doi.org/10.1002/ecm.1259.

Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22:415-427. https://doi.org/10.1101/SQB.1957.022.01.039.

Idaszkin, Y. L., and A. Bortolus. 2011. Does low temperature prevent Spartina alterniflora from expanding toward the austral-most salt marshes? Plant Ecology 212:553-561. https://doi.org/10.1007/s11258-010-9844-4.

Idaszkin, Y. L., A. Bortolus, and P. J. Bouza. 2011. Ecological processes shaping Central Patagonian salt marsh landscapes. Austral Ecology 36:59-67. https://doi.org/10.1111/j.1442-9993.2010.02117.x.

Isacch, J. P., C. S. B. Costa, L. Rodríguez-Gallego, D. Conde, M. Escapa, D. A. Gagliardini, and O. O. Iribarne. 2006. Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. Journal of Biogeography 33:888-900. https://doi.org/10.1111/j.1365-2699.2006.01461.x.

Jones, C. G., J. H. Lawton, and M. Shachak. 1994. Organisms as ecosystem engineers. Oikos 69:373-386. https://doi.org/10.2307/3545850.

Keen, B. A., and G. H. Cashen. 1932. Studies in Soil cultivation. VI. The physical effect of sheep folding on the soil (With five text-figures.). The Journal of Agricultural Science 22:126-134. https://doi.org/10.1017/S0021859600053144.

Kirwan, M. L., and S. M. Mudd. 2012. Response of salt-marsh carbon accumulation to climate change. Nature 489:550-553. https://doi.org/10.1038/nature11440.

Klironomos, J. N., J. McCune, M. Hart, and J. Neville. 2000. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecology Letters 3:137-141. https://doi.org/10.1046/j.1461-0248.2000.00131.x.

Krest, J. M., W. S. Moore, L. R. Gardner, and J. T. Morris. 2000. Marsh nutrient export supplied by groundwater discharge: Evidence from radium measurements. Global Biogeochemical Cycles 14:167-176. https://doi.org/10.1029/1999GB001197.

Kuijper, D. P. J., D. J. Nijhoff, and J. P. Bakker. 2004. Herbivory and competition slow down invasion of a tall grass along a productivity gradient. Oecologia 141:452-459. https://doi.org/10.1007/s00442-004-1664-6.

Leibold, M. A., and M. A. McPeek. 2006. Coexistence of the niche and neutral perspectives in community ecology. Ecology 87:1399-1410. https://doi.org/10.1890/0012-9658(2006)87[1399:COTNAN]2.0.CO;2.

Liao, C., Y. Luo, C. Fang, J. Chen, and B. Li. 2008. Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary. Oecologia 156(3):589-600. https://doi.org/10.1007/s00442-008-1007-0.

Martinetto, P., D. I. Montemayor, J. Alberti, C. S. B. Costa, and O. Iribarne. 2016. Crab bioturbation and herbivory may account for variability in carbon sequestration and stocks in south west atlantic salt marshes. Frontiers in Marine Science 3:122. https://doi.org/10.3389/fmars.2016.00122.

Matthews, B. J., and L. B. Vosshall. 2020. How to turn an organism into a model organism in 10 ‘easy’ steps. Journal of Experimental Biology 223. https://doi.org/10.1242/jeb.218198.

McLeod, E., G. L. Chmura, S. Bouillon, R. Salm, M. Björk, C. M. Duarte, C. E. Lovelock, W. H. Schlesinger, and B. R. Silliman. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO 2. Frontiers in Ecology and the Environment 9:552-560. https://doi.org/10.1890/110004.

Mendelssohn, I. A., K. L. McKee, and W. H. Patrick. 1981. Oxygen deficiency in Spartina alterniflora roots: metabolic adaptation to anoxia. Science 214:439-441. https://doi.org/10.1126/science.214.4519.439.

Mendez-Casariego, A., T. Luppi, O. Iribarne, and P. Daleo. 2011. Increase of organic matter transport between marshes and tidal flats by the burrowing crab Neohelice (Chasmagnathus) granulata Dana in SW Atlantic salt marshes. Journal of experimental marine biology and ecology 401:110-117. https://doi.org/10.1016/j.jembe.2011.02.035.

Menge, B. A., and J. P. Sutherland. 1987. Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. American Naturalist 130:730-757. https://doi.org/10.1086/284741.

Meysman, F. J. R., J. J. Middelburg, and C. H. R. Heip. 2006. Bioturbation: a fresh look at Darwin’s last idea. Trends in Ecology and Evolution 21:688-695. https://doi.org/10.1016/j.tree.2006.08.002.

Miller, S. P., and R. R. Sharitz. 2000. Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grass species. Functional Ecology 14:738-748. https://doi.org/10.1046/j.1365-2435.2000.00481.x.

Montemayor, D. I., M. Addino, E. Fanjul, M. Escapa, M. F. Álvarez, F. Botto, and O. O. Iribarne. 2011. Effect of dominant Spartina species on salt marsh detritus production in SW Atlantic estuaries. Journal of sea research 66:104-110. https://doi.org/10.1016/j.seares.2011.05.003.

Montoya, J. M., and D. Raffaelli. 2010. Climate change, biotic interactions and ecosystem services. Philosophical Transactions of the Royal Society B: Biological Sciences 365:2013-2018. https://doi.org/10.1098/rstb.2010.0114.

Odum, E. P. 1968. Energy Flow in Ecosystems: A Historical Review. American Zoologist 8:11-18. https://doi.org/10.1093/icb/8.1.11.

Pascual, J., J. Alberti, P. Daleo, and O. Iribarne. 2017. Herbivory and trampling by small mammals modify soil properties and plant assemblages. Journal of Vegetation Science 28:1028-1035. https://doi.org/10.1111/jvs.12562.

Pennings, S. C., and M. D. Bertness. 2001. Salt marsh communities. Pp. 289-316 in M. D. Bertness, S. D. Gaines and M. Hay (eds.). Marine community ecology. Sinauer Associates, Sunderland.

Pennings, S. C., M. Grant, and M. D. Bertness. 2005. Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. Journal of Ecology 93:159-167. https://doi.org/10.1111/j.1365-2745.2004.00959.x.

Rocca, C., P. Daleo, J. Núñez, B. R. Silliman, O. Iribarne, C. Angelini, and J. Alberti. 2021. Flood-stimulated herbivory drives range retraction of a plant ecosystem. Journal of Ecology 109:3541-3554. https://doi.org/10.1111/1365-2745.13735.

Santos, I. R., D. T. Maher, R. Larkin, J. R. Webb, and C. J. Sanders. 2019. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnology and Oceanography 64:996-1013. https://doi.org/10.1002/lno.11090.

Schmidt, K. M., J. J. Roering, J. D. Stock, W. E. Dietrich, D. R. Montgomery, and T. Schaub. 2001. The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Canadian Geotechnical Journal 38:995-1024. https://doi.org/10.1139/t01-031.

Silliman, B. R., and A. Bortolus. 2003. Underestimation of Spartina productivity in western Atlantic marshes: marsh invertebrates eat more than just detritus. Oikos 101:549-554. https://doi.org/10.1034/j.1600-0706.2003.12070.x.

Silliman, B. R., J. van de Koppel, M. D. Bertness, L. E. Stanton, and I. A. Mendelssohn. 2005. Drought, snails, and large-scale die-off of Southern U.S. salt marshes. Science 310:1803-1806. https://doi.org/10.1126/science.1118229.

Silliman, B. R., M. W. McCoy, C. Angelini, R. D. Holt, J. N. Griffin, and J. van de Koppel. 2013. Consumer fronts, global change, and runaway collapse in ecosystems. Annual Review of Ecology, Evolution, and Systematics 44:503-538. https://doi.org/10.1146/annurev-ecolsys-110512-135753.

Silliman, B. R., and S. Y. Newell. 2003. Fungal farming in a snail. Proceedings of the National Academy of Sciences of the United States of America 100:15643-15648. https://doi.org/10.1073/pnas.2535227100.

Silliman, B. R., and J. C. Zieman. 2001. Top-down control of Spartina alterniflora production by periwinkle grazing in a Virginia salt marsh. Ecology 82:2830-2845. https://doi.org/10.1890/0012-9658(2001)082[2830:TDCOSA]2.0.CO;2.

Simões, M. P., M. L. Calado, M. Madeira, and L. C. Gazarini. 2011. Decomposition and nutrient release in halophytes of a Mediterranean salt marsh. Aquatic Botany 94:119-126. https://doi.org/10.1016/j.aquabot.2011.01.001.

Smit, C., M. Rietkerk, and M. J. Wassen. 2009. Inclusion of biotic stress (consumer pressure) alters predictions from the stress gradient hypothesis. Journal of Ecology 97:1215-1219. https://doi.org/10.1111/j.1365-2745.2009.01555.x.

Tanner, C. B., and C. P. Mamaril. 1959. Pasture soil compaction by animal traffic. Agronomy Journal 51:329-331. https://doi.org/10.2134/agronj1959.00021962005100060007x.

Teal, J. M. 1962. Energy Flow in the Salt Marsh Ecosystem of Georgia. Ecology 43:614-624. https://doi.org/10.2307/1933451.

Townend, I., C. Fletcher, M. Knappen, and K. Rossington. 2011. A review of salt marsh dynamics. Water and Environment Journal 25:477-488. https://doi.org/10.1111/j.1747-6593.2010.00243.x.

Treplin, M., S. C. Pennings, and M. Zimmer. 2013. Decomposition of Leaf Litter in a U.S. Saltmarsh is Driven by Dominant Species, Not Species Complementarity. Wetlands 33:83-89. https://doi.org/10.1007/s13157-012-0353-1.

Valiela, I., J. M. Teal, and W. J. Sass. 1975. Production and dynamics of salt marsh vegetation and the effects of experimental treatment with sewage sludge. Biomass, production and species composition. Journal of Applied Ecology 12:973-981. https://doi.org/10.2307/2402103.

Valiñas, M., E. M. Acha, O. Iribarne, M. Valiñas, E. M. Acha, and O. Iribarne. 2010. Habitat use and feeding habits of juvenile fishes in an infrequently flooded Atlantic saltmarsh. Marine and Freshwater Research 61:1154-1163. https://doi.org/10.1071/MF09109.

Valiñas, M. S., L. M. Molina, M. Addino, D. I. Montemayor, E. M. Acha, and O. O. Iribarne. 2012. Biotic and environmental factors affect Southwest Atlantic saltmarsh use by juvenile fishes. Journal of sea research 68:49-56. https://doi.org/10.1016/j.seares.2011.12.001.

Vellend, M., D. S. Srivastava, K. M. Anderson, C. D. Brown, J. E. Jankowski, E. J. Kleynhans, N. J. B. Kraft, A. D. Letaw, A. A. M. Macdonald, J. E. Maclean, I. H. Myers-Smith, A. R. Norris, and X. Xue. 2014. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123:1420-1430. https://doi.org/10.1111/oik.01493.

Vera, F., J. L. Gutiérrez, and P. D. Ribeiro. 2009. Aerial and detritus production of the cordgrass Spartina densiflor a in a southwestern Atlantic salt marsh. Botany 87:482-491. https://doi.org/10.1139/B09-017.

Vu, H. D., and S. C. Pennings. 2021. Directional movement of consumer fronts associated with creek heads in salt marshes. Ecology 102(9):e03447. https://doi.org/10.1002/ecy.3447.

Vu, H. D., K. Wie˛ski, and S. C. Pennings. 2017. Ecosystem engineers drive creek formation in salt marshes. Ecology 98:162-174. https://doi.org/10.1002/ecy.1628.

van der Wal, R., H. van Wijnen, S. van Wieren, O. Beucher, and D. Bos. 2000. On facilitation between herbivores: how brent geese profit from brown hares. Ecology 81:969-980. https://doi.org/10.1890/0012-9658(2000)081[0969:OFBHHB]2.0.CO;2.

Ziegler, S. L., R. Baker, S. C. Crosby, D. D. Colombano, M. A. Barbeau, J. Cebrian, R. M. Connolly, L. A. Deegan, B. L. Gilby, D. Mallick, C. W. Martin, J. A. Nelson, J. F. Reinhardt, C. A. Simenstad, N. J. Waltham, T. A. Worthington, and L. P. Rozas. 2021. Geographic Variation in Salt Marsh Structure and Function for Nekton: a Guide to Finding Commonality Across Multiple Scales. Estuaries and Coasts 44:1497-1507. https://doi.org/10.1007/s12237-020-00894-y.

Zimmer, M., S. C. Pennings, T. L. Buck, and T. H. Carefoot. 2004. Salt marsh litter and detritivores: A closer look at redundancy. Estuaries 27:753-769. https://doi.org/10.1007/BF02912038.

Las marismas del sudoeste atlántico como sistemas modelo en ecología de comunidades y ecosistemas

Descargas

Archivos adicionales

Publicado

2022-09-20

Cómo citar

Daleo, P., Alberti, J., Montemayor, D. I., Giorgini, M., Botto, F., Pascual, J., Rocca, C., & Iribarne, O. (2022). Las marismas del sudoeste atlántico como sistemas modelo en ecología de comunidades y ecosistemas. Ecología Austral, 32(2), 806–820. https://doi.org/10.25260/EA.22.32.2.1.1882