Response of Commelina erecta L. to glyphosate formulations, and role of starch and waxes in glyphosate sensitivity

Authors

  • Elisa Panigo ICiAgro Litoral, UNL-CONICET. Esperanza, Santa Fe, Argentina. Universidad Nacional del Litoral, Facultad de Ciencias Agrarias. Esperanza, Santa Fe, Argentina https://orcid.org/0000-0003-2117-167X
  • Gabriel Céccoli ICiAgro Litoral, UNL-CONICET. Esperanza, Santa Fe, Argentina. Universidad Nacional del Litoral, Facultad de Ciencias Agrarias. Esperanza, Santa Fe, Argentina
  • Ignacio M. Dellaferrera ICiAgro Litoral, UNL-CONICET. Esperanza, Santa Fe, Argentina. Universidad Nacional del Litoral, Facultad de Ciencias Agrarias. Esperanza, Santa Fe, Argentina
  • Juan I. Garetto Universidad Nacional del Litoral, Facultad de Ciencias Agrarias. Esperanza, Santa Fe, Argentina
  • Abelardo C. Vegetti ICiAgro Litoral, UNL-CONICET. Esperanza, Santa Fe, Argentina
  • Mariel G. Perreta ICiAgro Litoral, UNL-CONICET. Esperanza, Santa Fe, Argentina. Universidad Nacional del Litoral, Facultad de Ciencias Agrarias. Esperanza, Santa Fe, Argentina

DOI:

https://doi.org/10.25260/EA.22.32.3.0.1892

Keywords:

weed, dayflowers, herbicide, growth stage

Abstract

The aim of this study was to evaluate the effects of two formulations of glyphosate on adult plants and seedlings of Commelina erecta L., and to determine whether stem starch storage and epicuticular waxes of leaves are involved in plant sensitivity to this herbicide. The formulations used were isopropylamine salt (IPA) and diammonium salt (DA). All measured growth parameters and chlorophyll were negatively affected by both formulations. The IPA formulation showed a higher decrease in the branching rate and phyllochron, whereas the DA formulation showed a higher decrease in the elongation rate, chlorophyll content at 48 hours after application in adult plants, and the starch proportion in the stem basal section, and caused more leaf injuries. All plants of C. erecta presented starch storage in the both stem section. After glyphosate application, stem starch proportion of the basal section evolved differently in both growth stages, whereas stem starch proportion of the apical section showed an irregular variation. The amount of epicuticular waxes was higher in adult plants. These results show that both glyphosate formulations are ineffective for the management of C. erecta. The low sensitivity to glyphosate in C. erecta, especially in plants higher than five leaves, could be related to starch storage in stem and epicuticular waxes on leaves.

References

Acosta, J. M., A. Carbone, and M. Perreta. 2018. Gomphrena perennis L. Pp. 181-189 in O. A. Fernández, E. Leguizamón and H. A. Acciaresi (eds.). Malezas e Invasoras de la Argentina. Ediuns (Editorial de la Universidad Nacional del Sur), Bahía Blanca, Buenos Aires, Argentina.

Arnon, D. I. 1949. Copper induced enzyme in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1-15. https://doi.org/10.1104/pp.24.1.1.

Barthélemy, D., Y. Caraglio, and E. Costes. 1997. Architecture, gradients morphogénétiques et age physiologique chez les végétaux. Pp. 89-136 in J. Bouchon, P. de Reffye and D. Barthélémy (eds.). Modélisation et simulation de l'architecture des végétaux. Science Update. Paris, France.

Casafe. 2020. Guía De Productos Fitosanitarios 19º edition. URL: tinyurl.com/mreh2nw5.

Cuhra, M., T. Bøhn, and P. Cuhra. 2016. Glyphosate: Too Much of a Good Thing? Front Environ Sci 4:28-41. https://doi.org/10.3389/fenvs.2016.00028.

D’ambrogio de Argüeso, A. 1986. Manual de técnicas en histología vegetal. Hemisferio Sur S.A. Buenos Aires, Buenos aires, Argentina.

Dellaferrera, I. M., N. J. Guarise, and A. Amsler. 2007. Relevamiento de malezas en cultivos de soja en sistema de siembra directa con glifosato del departamento San Justo (Provincia de Santa Fe). FAVE -Sección Agrarias 5-¬6:15-25. https://doi.org/10.14409/fa.v5i1/2.1318.

Fuchs, M. A., D. R. Geiger, T. L. Reynolds, and J. E Bourque. 2002. Mechanisms of glyphosate toxicity in velvetleaf (Abutilon theophrasti medikus). Pestic Biochem Phys 74:27-39. https://doi.org/10.1016/S0048-3575(02)00118-9.

Gaba, S., R. Perronne, G. Fried, A. Gardarin, F. Bretagnolle, L. Biju-Duval, N. Colbach, S. Cordeau, M. Fernández-Aparicio, C. Gauvrit, S. Gibot-Leclerc, J.P. Guillemin, D. Moreau, N. Munier-Jolain, F. Strbik, and X. Reboud. 2017. Response and effect traits of arable weeds in agro-ecosystems: a review of current knowledge. Weed Res 57:123-147. https://doi.org/10.1111/wre.12245.

García Torres, L., and C. Fernández Quintanilla. 1991. Fundamentos sobre malas hierbas y herbicidas. Ed. Mundi-Prensa. Madrid, España.

Hull, H. M., H. L. Morton, and J. R. Wharrie. 1975. Environmental influences on cuticle development and resultant foliar penetration. Bot Rev 41:420-451.

Kempenaar, C., L. A. P. Lotz, J. F. H. Snel, V. Smutny, and H. J. P. Zhan. 2010. Predicting herbicidal plant mortality with mobile photosynthesis meters. Weed Res 51:12-2. https://doi.org/10.1111/j.1365-3180.2010.00823.x.

Klimešová, J., A. Kociánová, and J. Martínková 2008. Weeds that can do both tricks: vegetative versus generative regeneration of the short-lived root-sprouting herbs Rorippa palustris and Barbarea vulgaris. Weed Res 48:131-135. https://doi.org/10.1111/j.1365-3180.2007.00608.x.

Lauri, P. E., and E. Terouanne. 1991. Éléments pour une approche morphométrique de la croissance végétale et de la floraison : le cas d'espèces tropicales du modèle de Leeuwenberg. Can J Botany 69:2095-2112. https://doi.org/10.1139/b91-264.

Li, J., R. Smeda, B. Sellers, and W. P. Johnson. 2005. Influence of formulation and glyphosate salt on absorption and translocation in three annual weeds. Weed Sci 53:153-159.https://doi.org/10.1614/WS-03-075R1.

Malpassi, R. 2006. Herbicide effects on cuticle ultrastructure in Eleusine indica and Portulaca oleracea. Biocell 30(1):51-56. https://doi.org/10.32604/biocell.2006.30.051.

Mateos-Naranjo, E., and A. P. Pérez-Martin. 2013. Effects of sub-lethal glyphosate concentrations on growth and photosynthetic performance of non-target species Bolboschoenus maritimus. Chemosphere 93:2631-2638. https://doi.org/10.1016/j.chemosphere.2013.09.094.

Monquero, P., P. J. Christoffoleti, J. A. Matas, and A. Heredia. 2004. Caracterização da superfície foliar e das ceras epicuticulares em Commelina benghalensis, Ipomoea grandifolia e Amaranthus hybridus. Planta Daninha 22(2):203-210. https://doi.org/10.1590/S0100-83582004000200005.

Nisensohn, L., D. Tuesca, D. Faccini, E. Puricelli, and J. V. Vitta. 2011. Factores biológicos que determinan la competencia de Commelina erecta con otras malezas en sistemas de cultivo. Planta Daninha 29:97-106. https://doi.org/10.1590/S0100-83582011000100012.

Panigo, E. S., I. M. Dellaferrera, J. M. Acosta, A. G. Bender, J. I. Garetto, and M. G. Perreta. 2012. Glyphosate-induced structural variations in Commelina erecta L. (Commelinaceae). Ecotox Environ Safe 76:135-142. https://doi.org/10.1016/j.ecoenv.2011.10.002.

Panigo, E. S., and L. P. Nisensohn. 2018. Commelina erecta L. Pp. 181-189 in O. A. Fernández, E. Leguizamón and H. A. Acciaresi (eds.). Malezas e Invasoras de la Argentina. Ediuns (Editorial de la Universidad Nacional del Sur). Bahía Blanca, Buenos Aires, Argentina.

Panigo, E. S., I. M. Dellaferrera, C. A. Alesso, A. C. Veggetti, and M. G. Perreta. 2019. The role of bud bank in glyphosate tolerance of two herbaceous species. B Soc Argent Bot 54:553-565. https://doi.org/10.31055/1851.2372.v54.n4.24301.

Potters, G., T. P. Pasternak, Y. Guisez, K. J. Palme, and M. A. K. Jansen. 2007. Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98-105. https://doi.org/10.1016/j.tplants.2007.01.004.

Rainero, H. 2004. Avances en el control de malezas con tolerancia al glifosato. Boletín INTA-EEA Manfredi 12:5-12.

Rasband, W. S. P. 2019. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. URL: imagej.nih.gov/ij/.

Schreiber, L. 2010 Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci 15:546-553. https://doi.org/10.1016/j.tplants.2010.06.004.

Scursoni, J. A., A. C. D. Vera, F. H. Oreja, B. C. Kruk, and E. B. de la Fuente. 2019. Weed management practices in Argentina crops. Weed Technol 33:459-463. https://doi.org/10.1017/wet.2019.26.

Shaner, D. 2009. Role of Translocation as a Mechanism of Resistance to Glyphosate. Weed Sci 57:118-123. https://doi.org/10.1614/WS-08-050.1.

Smith, A., and S. Zeeman. 2020. Starch: a flexible, adaptable carbon store coupled to plant growth. Annu Rev PlantBiol 71:217-245. https://doi.org/10.1146/annurev-arplant-050718-100241.

Storkey, J. 2004. Modeling seedling growth rates of 18 temperate arable weed species as a function of the environment and plant traits. Ann Bot 93:681-689. https://doi.org/10.1093/aob/mch095.

Suresh Kumar, J., S. Solomon, S. More, and V. P. Ravi. 2019. Effect of herbicide application on biochemical changes in weeds commonly infesting tuber crops growing fields. International Journal of Chemical Studies 7(5):677-682.

Tardif, F. J., I. Rajcan, and M. Costea. 2006. A mutation in the herbicide target site acetohydroxyacid synthase produces morphological and structural alterations and reduces fitness in Amaranthus powellii. New Phytol 169:251-264. https://doi.org/10.1111/j.1469-8137.2005.01596.x.

Travlos, I., N. Cheimona, and D. Bilalis. 2017. Glyphosate Efficacy of Different Salt Formulations and Adjuvant Additives on Various Weeds. Agronomy 7:60. https://doi.org/10.3390/agronomy7030060.

Tuffi Santos, L. D., R. Meira, I. Santos, and F. Ferreira. 2004. Efeito do glyphosate sobre a morfoanatomia das folhas e do caule de Commelina diffusa e C. benghalensis. Planta Daninha 22:101-107. https://doi.org/10.1590/S0100-83582004000100013.

Respuesta de Commelina erecta L. a dos formulados de glifosato, y rol del almidón y de las ceras epicuticulares en la sensibilidad al glifosato

Downloads

Published

2022-10-07

How to Cite

Panigo, E., Céccoli, G., Dellaferrera, I. M., Garetto, J. I., Vegetti, A. C., & Perreta, M. G. (2022). Response of Commelina erecta L. to glyphosate formulations, and role of starch and waxes in glyphosate sensitivity. Ecología Austral, 32(3), 920–929. https://doi.org/10.25260/EA.22.32.3.0.1892