Influence of land use in the relationship between spiders diversity and their potential preys

Authors

  • Carolina M. Pinto Laboratorio de Ecología de Comunidades y Macroecología. EGE-IEGEBA, UBA-CONICET
  • M. Isabel Bellocq§ Laboratorio de Ecología de Comunidades y Macroecología. EGE-IEGEBA, UBA-CONICET. §QEPD
  • Martín N. Ribero Laboratorio de Ecología de Comunidades y Macroecología. EGE-IEGEBA, UBA-CONICET
  • Julieta Filloy Laboratorio de Ecología de Comunidades y Macroecología. EGE-IEGEBA, UBA-CONICET

DOI:

https://doi.org/10.25260/EA.22.32.3.0.1904

Keywords:

Aranae, commercial forests, functional diversity, soybean cropfiels, species richness, traits

Abstract

The factors that regulate the diversity of organisms through trophic webs have been widely studied, although the environmental component is not frequently considered. Within the framework of environmental changes caused by land use and its influence on biodiversity, it is essential to consider how these changes influence the regulation of food webs. Here, we set out to investigate the effect of the diversity and abundance of prey on the diversity of predators (spiders) in different environmental conditions given by land use. Plots were established on sites with soybean crops and forest plantations. Half of them were treated by applying attractive bait for potential spider prey and the rest untreated as a control. Potential preys were collected using sticky traps, and spiders using drop traps. The response of specific richness, functional diversity and particular traits of spiders to the type of land use and treatment with bait was studied by means of mixed generalized linear models including the interaction between factors. The specific richness of spiders was similar between land uses and treatment with and without bait, although its abundance was greater in soybean fields than in plantations. In the latter, the functional diversity was lower in the bait plots than in the controls. The different traits examined showed varied responses to the factors. Soybean crops and eucalyptus plantations seem to limit the specific richness of spiders in a similar way, but not the functional diversity, even in the presence of greater diversity of food resources.

References

Anderson, M. J. 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245-253. https://doi.org/10.1111/j.1541-0420.2005.00440.x.

Bates, D. M. 2010. lme4: Mixed-effects modeling with R. URL: tinyurl.com/5n98jdvm.

Betz, L., and T. Tscharntke. 2017. Enhancing spider families and spider webs in Indian rice fields for conservation biological control, considering local and landscape management. J Insect Conserv 21:495-508. https://doi.org/10.1007/s10841-017-9990-2.

Bianchi, F. J. J. A., B. J. Walters, S. A. Cunningham, L. Hemerik, and N. A. Schellhorn. 2017. Landscape-scale mass-action of spiders explains early-season immigration rates in crops. Landsc Ecol 32:1257-1267. https://doi.org/10.1007/s10980-017-0518-7.

Bonte, D., J. Vanden Borre, L. Lens, and J.-P. Maelfait. 2006. Geographical variation in wolf spider dispersal behaviour is related to landscape structure. Anim Behav 72:655-662. https://doi.org/10.1016/j.anbehav.2005.11.026.

Brockerhoff, E. G., H. Jactel, J. A. Parrotta, C. P. Quine, J. and Sayer. 2008. Plantation forests and biodiversity: Oxymoron or opportunity? Biodivers Conserv 17:925-951. https://doi.org/10.1007/s10531-008-9380-x.

Brose, U. 2003. Bottom-up control of carabid beetle communities in early successional wetlands: Mediated by vegetation structure or plant diversity? Oecologia 135:407-413. https://doi.org/10.1007/s00442-003-1222-7.

Cadotte, M. W., and C. M. Tucker. 2017. Should Environmental Filtering be Abandoned? Trends Ecol Evol 32:429-437. https://doi.org/10.1016/j.tree.2017.03.004.

Cardoso, P., S. Pekár, R. Jocqué, and J. A. Coddington. 2011. Global patterns of guild composition and functional diversity of spiders. PLoS ONE 6(6):e21710. https://doi.org/10.1371/journal.pone.0021710.

Chaplin-Kramer, R., P. de Valpine, N. J. Mills, and C. Kremen. 2013. Detecting pest control services across spatial and temporal scales. Agric Ecosyst Environ 181:206-212. https://doi.org/10.1016/j.agee.2013.10.007.

Chen, B., and D. H. Wise. 1999. Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology 80:761-772. https://doi.org/10.1890/0012-9658(1999)080[0761:BULOPA]2.0.CO;2.

Corbelli, J. M., G. A. Zurita, J. Filloy, J. P. Galvis, N. I. Vespa, and I. Bellocq. 2015. Integrating taxonomic, functional and phylogenetic beta diversities: interactive effects with the biome and land use across taxa. PloS ONE 10(5):e0126854. https://doi.org/10.1371/journal.pone.0126854.

Corcuera, P., P. L. Valverde, M. L. Jiménez, A. Ponce-Mendoza, G. De la Rosa, and G. Nieto. 2016. Ground Spider Guilds and Functional Diversity in Native Pine Woodlands and Eucalyptus Plantations. Environ Entomol 45:292-300. https://doi.org/10.1093/ee/nvv181.

Dennis, P., J. Skartveit, A. Kunaver, and D. I. McCracken. 2015. The response of spider (Araneae) assemblages to structural heterogeneity and prey abundance in sub-montane vegetation modified by conservation grazing. Glob Ecol Conserv 3:715-728. https://doi.org/10.1016/j.gecco.2015.03.007.

Derraik, J. G. B., G. P. Closs, K. J. M. Dickinson, P. Sirvid, B. I. P. Barratt, and B. H. Patrick. 2002. Arthropod morphospecies versus taxonomic species: A case study with Araneae, Coleoptera, and Lepidoptera. Conserv Biol 16:1015-1023. https://doi.org/10.1046/j.1523-1739.2002.00358.x.

Deutsch, C. A., J. J. Tewksbury, R. B. Huey, K. S. Sheldon, C. K. Ghalambor, D. C. Haak, et al. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci 105:6668-6672. https://doi.org/10.1073/pnas.0709472105.

Emmerson, M. C., and D. Raffaelli. 2004. Predator - prey body size, interaction strength and the stability of a real food web. J Anim Ecol 73:399-409. https://doi.org/10.1111/j.0021-8790.2004.00818.x.

Filloy, J., G. A. Zurita, J. M. Corbelli, and M. I. Bellocq. 2010. On the similarity among bird communities: Testing the influence of distance and land use. Acta Oecologica 36:333-338. https://doi.org/10.1016/j.actao.2010.02.007.

Gallé, R., A. K. Happe, A. B. Baillod, T. Tscharntke, and P. Batáry. 2019. Landscape configuration, organic management, and within-field position drive functional diversity of spiders and carabids. J Appl Ecol 56:63-72. https://doi.org/10.1111/1365-2664.13257.

Greenstone, M. H. 1984. Determinants of web spider species diversity: vegetation structural diversity vs. prey availability. Oecologia 62:299-304. https://doi.org/10.1007/BF00384260.

Grismado, C. J., M. J. Ramírez, and M. A. Izquierdo. 2015. Araneae: Taxonomía, diversidad y clave de identificación de familias de la Argentina. Biodivers. Artrópodos Argentinos 3:55-93.

Hairston, N. G., F. E. Smith, L. B. Slobodkin, T. A. Naturalist, and N. N. Dec. 1960. Hairston et al. 1960 Community structure, population control, and competition Am Nat Am Nat 94:421-425. https://doi.org/10.1086/282146.

Horváth, R., S. Lengyel, C. Szinetár, and L. L. Jakab. 2005. The effect of prey availability on spider assemblages on European black pine (Pinus nigra) bark: spatial patterns and guild structure. Can J Zool 83:324-335. https://doi.org/10.1139/z05-009.

Hunter, M. D., and P. W. Price. 1992. Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73:724-732. https://doi.org/10.2307/1940152.

Kraft, N. J., P. B. Adler, O. Godoy, E. C. James, S. Fuller, and J. M. Levine. 2015. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29(5):592-599. https://doi.org/10.1111/1365-2435.12345.

Laliberté, E., P. and Legendre. 2010. A distance-based framework for measuring functional diversity from multiple traits A distance-based framework for measuring from multiple traits functional diversity. Ecology 91:299-305. https://doi.org/10.1890/08-2244.1.

Laliberté, E., P. Legendre, B. Shipley, and M E. Laliberté. 2014. FD: Measuring Functional Diversity from Multiple Traits, and Other Tools for Functional Ecology. R Package Version 1.0-12.

Lambeets, K., M. Vandegehuchte, M. Jean-Pierre, and B. Dries. 2009. Physical defences wear you down: progressive and. J Anim Ecol 78:281-291. https://doi.org/10.1111/j.1365-2656.2008.01472.x.

Landsman, A. P., and J. L. Bowman. 2017. Discordant response of spider communities to forests disturbed by deer herbivory and changes in prey availability. Ecosphere 8:e01703. https://doi.org/10.1002/ecs2.1703.

Langellotto, G. A., and R. F. Denno. 2004. Responses of invertebrate natural enemies to complex-structured habitats: A meta-analytical synthesis. Oecologia 139:1-10. https://doi.org/10.1007/s00442-004-1497-3.

Langlands, P. R., K. E. C. Brennan, V. W. Framenau, and B. Y. Main. 2011. Predicting the post‐fire responses of animal assemblages: testing a trait‐based approach using spiders. J Anim Ecol 80:558-568. https://doi.org/10.1111/j.1365-2656.2010.01795.x.

Lengyel, S., E. Déri, T. and Magura. 2016. Species richness responses to structural or compositional habitat diversity between and within grassland patches: A multi-taxon approach. PLoS ONE 11(2):e0149662. https://doi.org/10.1371/journal.pone.0149662.

Liljesthröm, G., E. Minervino, D. Castro, and A. Gonzalez. 2002. La Comunidad de Arañas del Cultivo de Soja en la Provincia de Buenos Aires, Argentina. Neotrop Entomol 31(2):197-210. https://doi.org/10.1590/S1519-566X2002000200005.

Liu, S., J. Chen, W. Gan, D. Schaefer, J. Gan, and X. Yang. 2015. Spider foraging strategy affects trophic cascades under natural and drought conditions. Sci Rep 5:1-9. https://doi.org/10.1038/srep12396.

Marín, L., S. M. Philpott, A. De la Mora, G. Ibarra Núñez, S. Tryban, and I. Perfecto. 2016. Response of ground spiders to local and landscape factors in a Mexican coffee landscape. Agric Ecosyst Environ 222:80-92. https://doi.org/10.1016/j.agee.2016.01.051.

Michalko, R., and S. Pekár. 2016. Different hunting strategies of generalist predators result in functional differences. Oecologia 181:1187-1197. https://doi.org/10.1007/s00442-016-3631-4.

Munévar, A., G. D. Rubio, and G. A. Zurita. 2018. Changes in spider diversity through the growth cycle of pine plantations in the semi-deciduous Atlantic Forest: The role of prey availability and abiotic conditions. For Ecol Manage 424:536-544. https://doi.org/10.1016/j.foreco.2018.03.025.

Ng, K., P. S. Barton, W. Blanchard, M. J. Evans, D. B. Lindenmayer, S. Macfadyen, et al. 2018. Disentangling the effects of farmland use, habitat edges, and vegetation structure on ground beetle morphological traits. Oecologia 188:645-657. https://doi.org/10.1007/s00442-018-4180-9.

Oksanen, L. 1988. Ecosystem organization: mutualism and cybernetics or plain Darwinian struggle for existence? Am Nat 131:424-444. https://doi.org/10.1086/284799.

Pinto, C. M., S. Santoandré, G. Zurita, M. I. Bellocq, and J. Filloy. 2018. Conifer plantations in grassland and subtropical forest: Does spider diversity respond different to edge effect? Journal of Forest Research 23(5):253-259. https://doi.org/10.1080/13416979.2018.1506248.

Pinto, C. M., P. E. Pairo, M. I. Bellocq, and J. Filloy. 2021. Different land-use types equally impoverish but differentially preserve grassland species and functional traits of spider assemblages. Scientific Reports 11(1):1-11. https://doi.org/10.1038/s41598-021-89658-7.

Prieto-Benítez, S., and M. Méndez. 2011. Effects of land management on the abundance and richness of spiders (Araneae): A meta-analysis. Biol Conserv 144:683-691. https://doi.org/10.1016/j.biocon.2010.11.024.

R Development Core Team. (2012). R: A language and environment for statistical computing. Vienna, Austria. URL: R-project. org.

Raub, F., L. Scheuermann, H. Höfer, and R. Brandl. 2014. No bottom-up effects of food addition on predators in a tropical forest. Basic Appl Ecol 15:59-65. https://doi.org/10.1016/j.baae.2013.12.001.

Rypstra, A. L., P. E. Carter, R. A. Balfour, and S. D. Marshall. 1999. Architectural Features of Agricultural Habitats and Their Impact on the Spider Inhabitants. J Arachnol 27:371-377.

Roubinet, E., K. Birkhofer, G. Malsher, K. Staudacher, B. Ekbom, M. Traugott, et al. 2017. Diet of generalist predators reflects effects of cropping period and farming system on extra- and intraguild prey. Ecol Appl 27(4):1167-1177. https://doi.org/10.1002/eap.1510.

Rzanny, M., A. Kuu, and W. Voigt. 2013. Bottom-up and top-down forces structuring consumer communities in an experimental grassland. Oikos 122(7):967-976. https://doi.org/10.1111/j.1600-0706.2012.00114.x.

Scherber, C., N. Eisenhauer, W. W. Weisser, B. Schmid, W. Voigt, M. Fischer, et al. 2010. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468(7323):553-556. https://doi.org/10.1038/nature09492.

Schirmel, J., I. Blindow, and S. Buchholz. 2012. Life-history trait and functional diversity patterns of ground beetles and spiders along a coastal heathland successional gradient. Basic Appl Ecol 13:606-614. https://doi.org/10.1016/j.baae.2012.08.015.

Schmidt, J. M., and A. L. Rypstra. 2010. Opportunistic predator prefers habitat complexity that exposes prey while reducing cannibalism and intraguild encounters. Oecologia 164:899-910. https://doi.org/10.1007/s00442-010-1785-z.

Schmitz, O. J. 2009. Effects of predator functional diversity on grassland ecosystem function. Ecol Soc Am 90:2339-2345. https://doi.org/10.1890/08-1919.1.

Schweiger, O., J. P. Maelfait, W. Van Wingerden, F. Hendrickx, R. Billeter, M. Speelmans, et al. 2005. Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales. J Appl Ecol 42:1129-1139. https://doi.org/10.1111/j.1365-2664.2005.01085.x.

Snyder, W. E., G. B. Snyder, D. L. Finke, and C. S. Straub. 2006. Predator biodiversity strengthens herbivore suppression. Ecol Lett 9:789-796. https://doi.org/10.1111/j.1461-0248.2006.00922.x.

Stubbs, W. J., and J. B. Wilson. 2004. Evidence for limiting similarity in a sand dune community. J Ecol 92:557-567. https://doi.org/10.1111/j.0022-0477.2004.00898.x.

Symondson, W. O. C., K. D. Sunderland, and M. H. Greenstone. 2002. Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561-594. https://doi.org/10.1146/annurev.ento.47.091201.145240.

Terborgh, J., and J. A. Estes (eds.). 2013. Trophic cascades: Predators, prey, and the changing dynamics of nature. Island Press. Pp. 488.

Tuf, I. H., P. Dedek, and M. Veselý. 2012. Does the diurnal activity pattern of carabid beetles depend on season, ground temperature and habitat? Arch Biol Sci 64:721-732. https://doi.org/10.2298/ABS1202721T.

Uetz, G. W., J. Halaj, and A. B. Cady. 1999. Guild structure in major crops. J Arachnol 27:270-280.

Vaccaro, A. S., J. Filloy, and M. I. Bellocq. 2019. What land use better preserves taxonomic and functional diversity of birds in a grassland biome? Avian Conservation and Ecology 14(1):1. https://doi.org/10.5751/ACE-01293-140101.

Weber, D. C., R. S. Pfannenstiel, and J. G. Lundgren. 2008. Diel predation pattern assessment and exploitation of sentinel prey: new interpretations of community and individual behaviors. Pp. 485-494 en Proceedings of the third international symposium on biological control of arthropods, Christchurch, New Zealand. USDA Forest Service Publication FHTET‐2008‐06, Morgantown, WV, USA.

Weiher, E., P. A. Keddy, and C. Kin. 1995. Assembly Rules, Null Models, and Trait Dispersion: New Questions from Old Patterns. Oikos 74(1):159-164. https://doi.org/10.2307/3545686.

Weiner, C. N., M. Werner, K. E. Linsenmair, and N. Bluthgen. 2014. Land-use impacts on plant - pollinator networks: interaction strength and specialization predict pollinator declines. Ecol Soc Am 95:466-474. https://doi.org/10.1890/13-0436.1.

Zhao, Z., C. Hui, F. Ouyang, J. Liu, and X. Guan. 2013. Effects of inter-annual landscape change on interactions between cereal aphids and their natural enemies. Basic Appl Ecol 14(6):472-479. https://doi.org/10.1016/j.baae.2013.06.002.

Zhao, Z. H., H. S. Sandhu, F. Gao, and D. H. He. 2015. Shifts in natural enemy assemblages resulting from landscape simplification account for biocontrol loss in wheat fields. Ecol Res 30:493-498. https://doi.org/10.1007/s11284-015-1245-7.

Zografou, K., G. C. Adamidis, M. Komnenov, V. Kati, P. Sotirakopoulos, E. Pitta, et al. 2017. Diversity of spiders and orthopterans respond to intra-seasonal and spatial environmental changes. J Insect Conserv 21:531-543. https://doi.org/10.1007/s10841-017-9993-z.

Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York, 574. https://doi.org/10.1007/978-0-387-87458-6.

Influencia del uso de la tierra sobre la relación entre la diversidad de arañas y sus presas potenciales

Published

2022-10-10

How to Cite

Pinto, C. M., Bellocq§, M. I., Ribero, M. N., & Filloy, J. (2022). Influence of land use in the relationship between spiders diversity and their potential preys. Ecología Austral, 32(3), 945–956. https://doi.org/10.25260/EA.22.32.3.0.1904