Respuestas a distintos niveles de organización biológica del poliqueto Boccardia proboscidea ante la contaminación cloacal

Autores/as

  • Manuela Ortells Privitera Departamento de Ciencias Marinas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata. Mar del Plata, Argentina
  • María L. Jaubet Departamento de Ciencias Marinas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata. Mar del Plata, Argentina. Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
  • María V. Laitano Departamento de Ciencias Marinas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata. Mar del Plata, Argentina. Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

DOI:

https://doi.org/10.25260/EA.23.33.1.0.1919

Palabras clave:

contaminación marina, Spionidae, biomarcadores, fenoloxidasa, Argentina

Resumen

El vertido de efluentes domésticos e industriales a los océanos es una de las principales formas de contaminación marina. El impacto de estos efluentes sobre el medio marino se puede estudiar a través de las respuestas a distintos niveles de organización biológica dentro del ecosistema. El objetivo de este trabajo fue evaluar respuestas bioquímicas (actividad de amilasas, proteasas alcalinas, lipasas, fenoloxidasa y pirogalol peroxidasas) y ecológicas (abundancia, talla y estructura poblacional) del poliqueto Boccardia proboscidea ante la exposición ambiental a contaminación cloacal, y explorar la relación entre ellas. Para el estudio se seleccionaron las zonas intermareales expuestas a dos efluentes cloacales con distintas características: un efluente intermareal sin tratamiento previo (Quequén) y un emisario submarino con tratamiento primario (Mar del Plata), ambos con sus áreas controles correspondientes. Los resultados no mostraron diferencias en la actividad de las enzimas digestivas ni de las pirogalol-peroxidasas. En cambio, la actividad de la fenoloxidasa alcanzó el mayor valor en el área impactada de Quequén, donde se registró la mayor densidad poblacional de B. proboscidea. Por otro lado, los individuos del área control de Quequén fueron de mayor talla respecto del resto de las áreas. En cuanto a la frecuencia de clases de edad (larva, juvenil, adulto), en el área impactada de Quequén se registró el mayor valor de individuos adultos. El análisis de la relación entre las respuestas bioquímicas, ecológicas y las variables ambientales mostró que la materia orgánica total y la densidad de B. proboscidea correlacionaron lineal positivamente con la actividad de la fenoloxidasa. Estos resultados sugieren que la exposición ambiental al efluente cloacal de Quequén induciría cambios a nivel fisiológico en los individuos de B. proboscidea, reflejado por la alta actividad de la enzima fenoloxidasa, que, a su vez, se relacionó positivamente con la densidad poblacional de esta especie.

Citas

Amiard-Triquet, C., and B. Berthet. 2015. Individual biomarkers. Pp. 153-182 en C. Amiard-Triquet, J. C. Amiard and C. Mouneyrac (eds.). Aquatic Ecotoxicology. Academic Press. https://doi.org/10.1016/B978-0-12-800949-9.00007-3.

Becherucci, M. E., M. L. Jaubet, M. S. Bottero, E. N. Llanos, R. Elías, et al. 2018. Rapid sewage pollution assessment by means of the coverage of epilithic taxa in a coastal area in the SW Atlantic. Science of the Total Environment 628:826-834. https://doi.org/10.1016/j.scitotenv.2018.02.024.

Benedetti, M., M. E. Giuliani, and F. Regoli. 2015. Oxidative metabolism of chemical pollutants in marine organisms: molecular and biochemical biomarkers in environmental toxicology. Annals of the New York Academy of Sciences 1340:8-19. https://doi.org/10.1111/nyas.12698.

Blake, J. A., and J. D. Kudenov. 1981. The Spionidae (Polychaeta) from southeastern Australia and adjacent areas, with a revision of the genera. Memoirs of the National Museum of Victoria 39:171-280. https://doi.org/10.24199/j.mmv.1978.39.11.

Bouvet, Y., R. P. Desse, P. Morell, and M. D. C. Villar. 2005. Mar del Plata (Argentina): la ciudad balnearia de los porteños en el Atlántico suroccidental. Investigaciones Geográficas 36:61-80. https://doi.org/10.14198/INGEO2005.36.02.

Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2):248-254. https://doi.org/10.1016/0003-2697(76)90527-3.

Byers, S., C. Mills, and P. Stewart. 1978. Comparison of methods of determining organic carbon in marine sediments, with suggestions for a standard method. Hydrobiologia 58(1):43-47. https://doi.org/10.1007/BF00018894.

Castro, J. M., V. A. Bianchi, M. M. Pascual, C. Almeida, A. Venturino, et al. 2018. Immune and biochemical responses in hemolymph and gills of the Patagonian freshwater mussel Diplodon chilensis, against two microbiological challenges: Saccharomyces cerevisiae and Escherichia coli. Journal of Invertebrate Pathology 157:36-44. https://doi.org/10.1016/j.jip.2018.08.005.

Charron, L., O. Geffard, A. Chaumot, R. Coulaud, A. Jaffal, et al. 2015. Consequences of lower food intake on the digestive enzymes activities, the energy reserves and the reproductive outcome in Gammarus fossarum. PloS ONE 10(4):1-14. https://doi.org/10.1371/journal.pone.0125154.

Cotou, E., C. Tsangaris, and M. Henry. 2013. Comparative study of biochemical and immunological biomarkers in three marine bivalves exposed at a polluted site. Environmental Science and Pollution Research 20(3):1812-1822. https://doi.org/10.1007/s11356-012-1150-3.

Cuello, G. V., E. N. Llanos, G. V. Garaffo, and M. L. Jaubet. 2019. Emisario submarino de Mar del Plata (Argentina): ¿Cómo impactó su construcción en la comunidad bentónica intermareal? Ecología Austral 29(1):28-40. https://doi.org/10.25260/EA.19.29.1.0.771.

De la Ossa Carretero, J. A. 2011. Evaluación del vertido de aguas residuales urbanas sobre hábitats de fondos blandos. Tesis Doctoral. Universidad de Alicante. Alicante. España. Pp. 221.

Dedourge-Geffard, O., L. Charron, C. Hofbauer, V. Gaillet, F. Palais, et al. 2013. Temporal patterns of digestive enzyme activities and feeding rate in gammarids (Gammarus fossarum) exposed to inland polluted waters. Ecotoxicology and Environmental Safety 97:139-146. https://doi.org/10.1016/j.ecoenv.2013.07.016.

Elías, R., N. Méndez, P. Muniz, R. Cabanillas, C. Gutiérrez-Rojas, et al. (2021). Los poliquetos como indicadores biológicos en Latinoamérica y el Caribe. Marine and Fishery Sciences 34(1):37-107. https://doi.org/10.47193/mafis.3412021010301.

Galloway, T. S., and Depledge, M. H. 2001. Immunotoxicity in invertebrates: measurement and ecotoxicological relevance. Ecotoxicology 10(1):5-23. https://doi.org/10.1023/A:1008939520263.

Galloway, T. S. 2006. Biomarkers in environmental and human health risk assessment. Marine Pollution Bulletin 53(10-12):606-613. https://doi.org/10.1016/j.marpolbul.2006.08.013.

Gao, Y., H. Xu, L. Li, and C. Niu. 2020. Immune defense parameters of wild fish as sensitive biomarkers for ecological risk assessment in shallow sea ecosystems: A case study with wild mullet (Liza haematocheila) in Liaodong Bay. Ecotoxicology and Environmental Safety 194:110337. https://doi.org/10.1016/j.ecoenv.2020.110337.

Garaffo, G. V., M. L. Jaubet, M. A. Sánchez, E. N. Llanos, E. A. Vallarino, et al. 2015. Modelling the influence of environmental and weather factors on the density of the invader polychaete Boccardia proboscidea. Marine Ecology 37(6):1256-1265. https://doi.org/10.1111/maec.12307.

García-Carreño, F. L. 1992. The digestive proteases of langostilla (Pleuroncodes planipes, Decapoda): their partial characterization, and the effect of feed on their composition. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 103(3):575-578. https://doi.org/10.1016/0305-0491(92)90373-Y.

Giard, A. 1905. La Poevilogonie. Pp. 617-646 in Comptes Rendus 6th Congress International Zoology, Berne.

Gibson, G. D. 1997. Variable development in the spionid Boccardia proboscidea (Polychaeta) is linked to nurse egg production and larval trophic mode. Invertebrate Biology 116(3):213-226. https://doi.org/10.2307/3226898.

Goodsell, P. J., A. J. Underwood, and M. G. Chapman. 2009. Evidence necessary for taxa to be reliable indicators of environmental conditions or impacts. Marine Pollution Bulletin 58(3):323-331. https://doi.org/10.1016/j.marpolbul.2008.10.011.

Hines, E. 2018. Salud ambiental de playas rocosas en distintos partidos de la Provincia de Buenos Aires. Tesis de grado. Universidad Nacional de Mar del Plata. Buenos Aires. Argentina. Pp. 83.

Jaubet, M. L., M. A. Sánchez, M. S. Rivero, G. V. Garaffo, E. A. Vallarino, et al. 2011. Intertidal biogenic reefs built by the polychaete Boccardia proboscidea in sewage‐impacted areas of Argentina, SW Atlantic. Marine Ecology 32(2):188-197. https://doi.org/10.1111/j.1439-0485.2010.00415.x.

Jaubet, M. L., G. V. Garaffo, E. A. Vallarino, and R. Elías. 2015. Invasive polychaete Boccardia proboscidea Hartman, 1940 (Polychaeta: Spionidae) in sewage‐impacted areas of the SW Atlantic coasts: morphological and reproductive patterns. Marine Ecology 36(3):611-622. https://doi.org/10.1111/maec.12170.

Jemec, A., D. Drobne, T. Tišler, and K. Sepčić. 2009. Biochemical biomarkers in environmental studies-lessons learnt from enzymes catalase, glutathione S-transferase and cholinesterase in two crustacean species. Environmental Science and Pollution Research 17(3):571-581. https://doi.org/10.1007/s11356-009-0112-x.

Laitano, M. V., M. Díaz-Jaramillo, Y. E. Rodríguez, E. Ducós, and H. O. Panarello. 2018. Linking stable isotopes and biochemical responses in Balanus glandula under sewage influence. Marine Pollution Bulletin 127:505-511. https://doi.org/10.1016/j.marpolbul.2017.12.036.

Lamela, R. E. L., R. Silveira Coffigny, Y. C. Quintana, and M. Martínez. 2005. Phenoloxidase and peroxidase activity in the shrimp Litopenaeus schmitti, Pérez‐Farfante and Kensley (1997) exposed to low salinity. Aquaculture Research 36(13):1293-1297. https://doi.org/10.1111/j.1365-2109.2005.01344.x.

Llanos, E. N., M. A. Saracho-Bottero, M. L. Jaubet, G. V. Garaffo, E. Hines, et al. 2021. The boom-bust dynamic of the invader Boccardia proboscidea mediated by sewage discharge: the response of the intertidal epilithic community in the Southwest Atlantic. Marine Pollution Bulletin 164:112045. https://doi.org/10.1016/j.marpolbul.2021.112045.

Lomartire, S., J. C. Marques, and A. M. Gonçalves. 2021. Biomarkers based tools to assess environmental and chemical stressors in aquatic systems. Ecological Indicators 122:107207. https://doi.org/10.1016/j.ecolind.2020.107207.

López Gappa, J., A. Tablado, and N. H. Magaldi. 1990. Influence of sewage pollution on a rock intertidal community dominated by the mytilid Brachidontes rodriguezii. Marine Ecology Progress Series 63:163-175. https://doi.org/10.3354/meps063163.

Luna-González, A., J. T. Moreno-Herrera, Á. I. Campa-Córdova, H. A. González-Ocampo, J. A. Fierro-Coronado, et al. 2013. Immune response and gene expression of white shrimp (Litopenaeus vannamei) induced by microbial immunostimulants. Latin American Journal of Aquatic Research 41(5):898-907. https://doi.org/10.3856/vol41-issue5-fulltext-10.

Machado, A. A. D. S., C. M. Wood, A. Bianchini, and P. L. Gillis. 2014. Responses of biomarkers in wild freshwater mussels chronically exposed to complex contaminant mixtures. Ecotoxicology 23(7):1345-1358. https://doi.org/10.1007/s10646-014-1277-8.

Markert, B. 2007. Definitions and principles for bioindication and biomonitoring of trace metals in the environment. Journal of Trace Elements in Medicine and Biology 21:77-82. https://doi.org/10.1016/j.jtemb.2007.09.015.

Muniz, P., P. da Cunha Lana, N. Venturini, R. Elías, E. Vallarino, et al. (2013). Un manual de protocolos para evaluar la contaminación marina por efluentes domésticos. Pp. 1-131. Universidad de la República, Montevideo.

Mydlarz, L. D., and C. D. Harvell. 2007. Peroxidase activity and inducibility in the sea fan coral exposed to a fungal pathogen. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 146(1):54-62. https://doi.org/10.1016/j.cbpa.2006.09.005.

Nolasco Soria, H., F. Moyano-López, F. Vega Villasante, A. del Monte-Martínez, D. Espinosa-Chaurand, et al. 2018. Métodos de actividad de lipasa y fosfolipasa para organismos marinos. Lipasas y fosfolipasas 139-167. https://doi.org/10.1007/978-1-4939-8672-9_7.

OSSE. 2018. URL: osmgp.gov.ar/osse/?s=+EDAR.

Paine, R. T. 1994. Marine rocky shores and community ecology: An experimentalist's perspective. Fourth volume. Ecology Institute, Oldendorf/Luhe, Germany.

Palmer, C. V., J. C. Bythell, and B. L. Willis. 2011. A comparative study of phenoloxidase activity in diseased and bleached colonies of the coral Acropora millepora. Developmental and Comparative Immunology 35(10):1098-1101. https://doi.org/10.1016/j.dci.2011.04.001.

Pearson, T. H., and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology: an Annual Review 16:229-311.

Salomão, A. L. S., R. A. Hauser-Davis, and M. Marques. 2020. Critical knowledge gaps and relevant variables requiring consideration when performing aquatic ecotoxicity assays. Ecotoxicology and Environmental Safety 203:110941. https://doi.org/10.1016/j.ecoenv.2020.110941.

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: R-project.org.

Sánchez, M. A. 2014. Aplicación de un diseño BACI para la evaluación de impacto antrópico mediante poliquetos indicadores y la estructura de la comunidad intermareal de Brachidontes rodriguezii. Tesis Doctoral. Universidad Nacional de Mar del Plata. Buenos Aires. Argentina. Pp. 206.

Saracho-Bottero, M. A., M. L. Jaubet, E. N. Llanos, M. E. Becherucci, R. Elías, et al. 2020. Spatial and temporal variability on the macrobenthic community as a consequence of the effect of urban sewage. Marine Pollution Bulletin 156:111189. https://doi.org/10.1016/j.marpolbul.2020.111189.

Seabra Pereira, C. D., D. M. S. Abessa, R. B. Choueri, V. Almagro-Pastor, A. Cesar, et al. 2014. Ecological relevance of sentinels’ biomarker responses: A multi-level approach. Marine Environmental Research 96:118-126. https://doi.org/10.1016/j.marenvres.2013.11.002.

Surugiu, V. and M. Feunteun. 2008. The structure and distribution of polychaete populations influenced by sewage from the Romanian Coast of the Black Sea. Analete Stiintifice ale Universitatii ‘Al. I. Cusa’ Iasi, s. Biologie Animala 54:177-184.

Tlili, S., and C. Mouneyrac. 2021. New challenges of marine ecotoxicology in a global change context. Marine Pollution Bulletin 166:112242. https://doi.org/10.1016/j.marpolbul.2021.112242.

Vega Villasante, F., I. Fernández, R. M. Preciado, M. Oliva, D. Tovar, et al. 1999. The activity of digestive enzymes during the molting stages of the arched swimming Callinectes arcuatus Ordway, 1863 (Crustacea: Decapoda: Portunidae). Bulletin of Marine Science 65(1):1-9.

Vidal, M. L., A. Bassères, and J. F. Narbonne. 2002. Influence of temperature, pH, oxygenation, water-type and substrate on biomarker responses in the freshwater clam Corbicula fluminea (Müller). Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 132(1):93-104. https://doi.org/10.1016/S1532-0456(02)00051-0.

Voullioz, M. 2016. Distribución espacio-temporal de las clases de edad del poliqueto invasor Boccardia proboscidea Hartman, 1940 en la zona del efluente cloacal de la ciudad de Mar del Plata (Argentina). Tesis de grado. Universidad Nacional de Mar del Plata. Buenos Aires. Argentina. Pp. 41.

Wold, S., K. Esbensen, and P. Geladi. 1987. Principal component analysis. Chemometrics and Intellegent Laboratory Systems 2:37-52. https://doi.org/10.1016/0169-7439(87)80084-9.

Wu, R. S., W. H. Siu, and P. K. Shin. 2005. Induction, adaptation and recovery of biological responses: implications for environmental monitoring. Marine Pollution Bulletin 51(8-12):623-634. https://doi.org/10.1016/j.marpolbul.2005.04.016.

Zanette, J., J. M. Monserrat, and A. Bianchini. 2015. Biochemical biomarkers in barnacles Balanus improvisus: pollution and seasonal effects. Marine Environmental Research 103:74-79. https://doi.org/10.1016/j.marenvres.2014.11.001.

Zar, J. H. 1999. Biostatistical Analysis. Fifth edition. Prentice-Hall: Upper Saddle River, NJ, USA.

Respuestas a distintos niveles de organización biológica del poliqueto Boccardia proboscidea ante la contaminación cloacal

Descargas

Publicado

2023-01-03

Cómo citar

Ortells Privitera, M., Jaubet, M. L., & Laitano, M. V. (2023). Respuestas a distintos niveles de organización biológica del poliqueto Boccardia proboscidea ante la contaminación cloacal. Ecología Austral, 33(1), 030–042. https://doi.org/10.25260/EA.23.33.1.0.1919