Automated tracking of aquatic crustaceans with potential application on the quantification of animals movement

Authors

  • Jesús D. Nuñez Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, Universidad Nacional de Mar del Plata-CONICET. Mar del Plata, provincia de Buenos Aires, Argentina
  • Octavio Massone Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, Universidad Nacional de Mar del Plata-CONICET. Mar del Plata, provincia de Buenos Aires, Argentina
  • José A. García Universitat Oberta de Catalunya (UOC). Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC)

DOI:

https://doi.org/10.25260/EA.23.33.1.0.1920

Keywords:

Python, OpenCV, object detection, video tracking, behavioural ecology

Abstract

Here, we present a set of algorithms using the Python programming language, that will allow using a routine for object detection and tracking in experimental videos. We developed a script, under the fundamentals of background subtraction and image thresholding (using the OpenCV package), that makes it possible to track a wide spectrum of animals under different conditions. We have validated this script through testing on semi-terrestrial and aquatic crustacean species and under different experimental scenarios (laboratory and field sampling and using video created under nocturnal and diurnal conditions). The open-source nature of the script allows for flexibility and scalability, so it can be easily customized and is thus transferable to other species/experiments in the context of behavioral ecology. The tracking script is easy customizable and free alternative to commercial video tracking systems and therefore, applicable to a wide variety of both educational and research programs.

References

Antunes, M., and G. Biala. 2012. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93-110. https://doi.org/10.1007/s10339-011-0430-z.

Audira, G., N. T. Ngoc Anh, B. T. Ngoc Hieu, N. Malhotra, P. Siregar, O. Villalobos, O. B. Villaflores, T. R. Ger, I. C. Huang, K. H. Chen, and C. D. Hsiao. 2020. Evaluation of the adverse effects of chronic exposure to donepezil (an acetylcholinesterase inhibitor) in adult zebrafish by behavioral and biochemical assessments. Biomolecules 10(9):1340. https://doi.org/10.3390/biom10091340.

Bradski, G. 2000. The OpenCV Library | Dr Dobb’s. URL: drdobbs.com/open-source/the680opencv-library/184404319.

Dell, A. I., J. A. Bender, K. Branson, I. D. Couzin, G. G. de Polavieja, L. Noldus, A. Pérez-Escudero, P. Perona, A. D. Straw, M. Wikelski, and U. Brose. 2014. Automated image-based tracking and its application in ecology. Trends in Ecology and Evolution 29(7):417-428. https://doi.org/10.1016/j.tree.2014.05.004.

Garcia, J. A., V. Sbragaglia, D. Masip, and J. Aguzzi. 2019. Long-term Video Tracking of Cohoused Aquatic Animals: A Case Study of the Daily Locomotor Activity of the Norway Lobster (Nephrops norvegicus). Journal of Visual Experiment 146:e58515. https://doi.org/10.3791/58515.

Iriarte, R., Nuñez, J. D., Spivak, E. D., and C. C. Bas. 2022. Innate response to con- and heterospecific alarm chemicals in juveniles of a freshwater shrimp. Journal of Zoology 318(2):104-113. https://doi.org/10.1111/jzo.13001.

Mahalanobis, P. C. 1936. On the Generalized Distance in StatiJournal of Zoologystics. Proceedings of the National Institute of Science of India 2:49-55.

Noldus, L., J. Spink, and R. Tegelenbosch. 2001. EthoVision: A versatile video tracking system for automation of behavioral experiments. Behavior Research Methods, Instruments and Computers 33(3):398-414. https://doi.org/10.3758/BF03195394.

Nuñez, J. D., V. Sbragaglia, J. A. García, J. B. Company, and J. Aguzzi. 2016. First laboratory insight on the behavioral rhythms of the bathyal crab Geryon longipes. Deep Sea Research I 116:165-173. https://doi.org/10.1016/j.dsr.2016.08.007.

Nuñez, J. D., V. Sbragaglia, P. D. Ribeiro, E. Spivak, and T. A. Luppi. 2021. The magnitude of behavioral responses to artificial light at night depends on the ecological context in a coastal marine ecosystem engineer. Marine Environmental Research 165:105238. https://doi.org/10.1016/j.marenvres.2020.105238.

R Core Team. 2020. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Sbragaglia, V., J. Aguzzi, J. A. García, D. Sarriá, S. Gomariz, C. Costa, P. Menesatti, M. Vilaró, A. Manuel, and F. Sardá. 2013. An automated multi-flume actograph for the study of behavioral rhythms of burrowing organisms. Journal of Experimental Marine Biology and Ecology 446:177-185. https://doi.org/10.1016/j.jembe.2013.05.018.

Thoré, E. S. J., L. Brendonck, and T. Pinceel. 2021. Natural daily patterns in fish behaviour may confound results of ecotoxicological testing. Environmental Pollution 276:116738. https://doi.org/10.1016/j.envpol.2021.116738.

Ushey, K., Allaire J. J., and Y. Tang. 2021. reticulate: Interface to 'Python'. R package version 1.20. URL: cran.r-project.org/package=reticulate.

Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9:671-675. https://doi.org/10.1038/nmeth.2089.

Automated tracking of aquatic crustaceans with potential application on the quantification of animals movement

Downloads

Additional Files

Published

2022-12-28

How to Cite

Nuñez, J. D., Massone, O., & García, J. A. (2022). Automated tracking of aquatic crustaceans with potential application on the quantification of animals movement. Ecología Austral, 33(1), 053–059. https://doi.org/10.25260/EA.23.33.1.0.1920

Issue

Section

Short Communications