Light availability and calafate fruit production in a native mixed shrubland (Río Negro, Argentina)

Authors

  • Facundo Fioroni Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina
  • Natalia Fernández Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (Universidad Nacional del Comahue - Consejo Nacional de Investigaciones Científicas y Técnicas)
  • Margarita Fernández Dept. of Ecosystem Sciences and Management, The Pennsylvania State University. Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park. USA
  • Lucas Garibaldi Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina

DOI:

https://doi.org/10.25260/EA.22.32.3.0.1952

Keywords:

Berberis microphylla, non-timber forest products, natural resources, canopy openness

Abstract

Non-timber forest products (NTFP), such as wild berries, are of great importance for rural communities and vulnerable social groups due to the economic income they might generate and their role in these people’s nutrition. To optimize forest plants productivity is necessary to study their ecological needs, such as light availability. Calafate (Berberis microphylla) fruits are NTFP of interest. However, there is little information about the relation between their productivity and light availability. In this study, the potential of a native mixed shrubland as supplier of calafate fruits and its relation with light availability was analyzed. To achieve this, the presence and number of fruits in calafate plants naturally established in a native shrubland in El Foyel, Río Negro, and exposed to different light intensities were evaluated. An estimation of the productivity of the shrubland sampled was also made for different levels of light availability. Generalized linear models were used to analyze the data. It was found that greater canopy openness corresponded to a higher probability of fruiting and to a greater number of fruits per plant. In addition, a positive relationship was found between plant height and number of fruits. It was estimated that the highest fruit production would be found in a 100% canopy openness scenario, in which case, ~54.87 kg/ha would be obtained. It was concluded that light availability is an essential factor for calafate fruiting. Moreover, considering that the average canopy openness of the sampled shrubland was 22.2%, it is considered that an appropriate environmental management is necessary to optimize the use of this species in a sustainable and economically convenient way.

References

Arena, M. E., A. Zuleta, L. Dyner, D. Constenla, L. Ceci, and N. Curvetto. 2013. Berberis buxifolia fruit growth and ripening: evolution in carbohydrate and organic acid contents. Scientia Horticulturae 158:52-58. https://doi.org/10.1016/j.scienta.2013.04.026.

Arena, M. E., M. V. Lencinas, and S. Radice. 2018. Variability in floral traits and reproductive success among and within populations of Berberis microphylla G. Forst., an underutilized fruit species. Scientia Horticulturae 241:65-73. https://doi.org/10.1016/j.scienta.2018.06.080.

Arena, M. E., P. Postemsky, and N. R. Curvetto. 2012. Accumulation patterns of phenolic compounds during fruit growth and ripening of Berberis buxifolia, a native Patagonian species. New Zealand Journal of Botany 50:15-28. https://doi.org/10.1080/0028825X.2011.638644.

Barbour, M. G., J. H. Burk, and W. D. Pitts. 1976. Terrestrial plant ecology. 1st Edition. The Benjamin/Cummings Publishing Company, Massachusetts, USA.

Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York. URL: rem-main.rem.sfu.ca/downloads/Forestry/GLAV2UsersManual.pdf.

Bustamante, G. N., R. Soler, A. P. Blazina, and M. E. Arena. 2020. Fruit provision from Berberis microphylla shrubs as ecosystem service in Nothofagus forest of Tierra del Fuego. Heliyon 6:e05206. https://doi.org/10.1016/j.heliyon.2020.e05206.

Chamberlain, J. L. 2018. Assessment of nontimber forest products in the United States under changing conditions. General Technical Report SRS-GTR-232. USDA Forest Service, Southern Research Station. Pp. 268. https://doi.org/10.2737/SRS-GTR-232.

Coulin, C., M. A. Aizen, and L. A. Garibaldi. 2019. Contrasting responses of plants and pollinators to woodland disturbance. Austral Ecology 44:1040-1051. https://doi.org/10.1111/aec.12771.

Dlugos, D. M., H. Collins, E. M. Bartelme, and R. E. Drenovsky. 2015. The non‐native plant Rosa multiflora expresses shade avoidance traits under low light availability. American Journal of Botany 102:1323-1331. https://doi.org/10.3732/ajb.1500115.

Eckerter, T., J. Buse, M. Förschler, and G. Pufal. 2019. Additive positive effects of canopy openness on European bilberry (Vaccinium myrtillus) fruit quantity and quality. Forest Ecology and Management 433:122-130. https://doi.org/10.1016/j.foreco.2018.10.059.

FAO (Food and Agriculture Organization of the United Nations). 1999. Towards a harmonized definition of non-wood forest products. Unasylva 198:63-64. URL: fao.org/docrep/x2450e/x2450e0d.htm#fao_forestry.

FAO (Food and Agriculture Organization of the United Nations). 2021. The Global Forest Goals Report 2021. United Nations publication, New York, USA. https://doi.org/10.18356/9789214030515.

Finzi, A. C., and C. D. Canham. 2000. Sapling growth in response to light and nitrogen availability in a southern New England forest. Forest Ecology and Management 131:153-165. http://doi.org/10.1016/s0378-1127(99)00206-6.

Frazer, G. W., C. D. Canham, and K. P Lertzman. 1999. Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, user’s manual and program documentation. Simon Fraser University.

Gallagher, E. J., K. W. Mudge, M. P. Pritts, and S. D. DeGloria. 2015. Growth and development of ‘Illini Hardy’ blackberry (Rubus subgenus Eubatus Focke) under shaded systems. Agroforestry Systems 89:1-17. https://doi.org/10.1007/s10457-014-9738-x.

Jogaiah, S., K. R. Striegler, E. Bergmeier, and J. Harris. 2013. Influence of canopy management practices on canopy characteristics, yield, and fruit composition of ‘Norton’ grapes (Vitis aestivalis Michx). International Journal of Fruit Science 13:441-458. https://doi.org/10.1080/15538362.2013.789267.

Kar, S. P., and M. G. Jacobson. 2012. NTFP income contribution to household economy and related socio-economic factors: Lessons from Bangladesh. Forest Policy and Economics 14:136-142. https://doi.org/10.1016/j.forpol.2011.08.003.

Kato, E., and T. Hiura. 1999. Fruit set in Styrax obassia (Styracaceae): the effect of light availability, display size, and local floral density. American Journal of Botany 86:495-501. https://doi.org/10.2307/2656810.

Kilkenny, F. F., and L. F. Galloway. 2008. Reproductive success in varying light environments: direct and indirect effects of light on plants and pollinators. Oecologia 155:247-255. https://doi.org/10.1007/s00442-007-0903-z.

Landrum, L. R. 1999. Revision of Berberis (Berberidaceae) in Chile and adjacent southern Argentina. Annals of the Missouri Botanical Garden 86:793-834. https://doi.org/10.2307/2666170.

Lin, F., L. S. Comita, X. Wang, X. Bai, Z. Yuan, D. Xing, and Z. Hao. 2014. The contribution of understory light availability and biotic neighborhood to seedling survival in secondary versus old-growth temperate forest. Plant Ecology 215:795-807. https://doi.org/10.1007/s11258-014-0332-0.

Meekins, J. F., and B. C. McCarthy. 2000. Responses of the biennial forest herb Alliaria petiolata to variation in population density, nutrient addition and light availability. Journal of Ecology 88:447-463. https://doi.org/10.1046/j.1365-2745.2000.00461.x.

Peri, P. L., M. Arena, G. M. Pastur, and M. V. Lencinas. 2011. Photosynthetic response to different light intensities, water status and leaf age of two Berberis species (Berberidaceae) of Patagonian steppe, Argentina. Journal of Arid Environments 75:1218-1222. https://doi.org/10.1016/j.jaridenv.2011.06.003.

Poorter, H., Ü. Niinemets, N. Ntagkas, A. Siebenkäs, M. Mäenpää, S. Matsubara, and T. Pons. 2019. A meta‐analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologist 223:1073-1105. https://doi.org/10.1111/nph.15754.

Putz, F. E., L. K. Sirot, and M. A. Pinard. 2001. 2. Tropical Forest Management and Wildlife: Silvicultural Effects on Forest Structure, Fruit Production, and Locomotion of Arboreal Animals. Pp. 11-34 en The Cutting Edge. Columbia University Press. https://doi.org/10.7312/fimb11454-005.

R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: R-project.org.

Radice, S., and M. E. Arena. 2018. Reproductive shoots of Berberis microphylla G. Forst. in relation with the floral bud development and the fruit set. Heliyon 4:e00927. https://doi.org/10.1016/j.heliyon.2018.e00927.

Radice, S., and M. E. Arena. 2021. El Calafate, una especie nativa de Patagonia. 1ra edición. Universidad de Morón, Morón, Buenos Aires, Argentina. URL: tinyurl.com/5s46kr3e.

Reque, J. A., M. Sarasola, J. Gyenge, and M. E. Fernández. 2007. Caracterización silvícola de ñirantales del norte de la Patagonia para la gestión forestal sostenible. Bosque (Valdivia) 28:33-45. https://doi.org/10.4067/s0717-92002007000100006.

Rodoni, L. M., V. Feuring, M. J. Zaro, G. O. Sozzi, A. R. Vicente, and M. E. Arena. 2014. Ethylene responses and quality of antioxidant-rich stored barberry fruit (Berberis microphylla). Scientia Horticulturae 179:233-238. https://doi.org/10.1016/j.scienta.2014.09.023.

Saifullah, M. K., F. B. Kari, and A. Othman. 2018. Income dependency on non-timber forest products: an empirical evidence of the indigenous people in Peninsular Malaysia. Social Indicators Research 135:215-231. https://doi.org/10.1007/s11205-016-1480-5.

Singh, A., P. Bhattacharya, P. Vyas, and S. Roy. 2010. Contribution of NTFPs in the livelihood of mangrove forest dwellers of Sundarban. Journal of Human Ecology 29:191-200. https://doi.org/10.1080/09709274.2010.11906263.

Stockdale, M. 2005. Steps to sustainable and community-based NTFP management. Non-Timber Forest Products-Exchange Programme for South and Southeast Asia, The Philippines.

Svriz, M. 2015. Ecofisiología de Berberis darwinii Hook. en su área nativa de distribución. Tesis doctoral. Departamento de Fiosiología Vegetal, Universidad Nacional del Comahue, Bariloche, Río Negro, Argentina. Pp. 169.

Svriz, M., M. A. Damascos, K. D. Lediuk, S. A. Varela, and D. Barthélémy. 2014. Effect of light on the growth and photosynthesis of an invasive shrub in its native range. AoB Plants 6:plu033. https://doi.org/10.1093/aobpla/plu033.

Taiz, L., E. Zeiger. 2002. Plant physiology. 3rd edition. Sinauer Associates, Sunderland, United Kingdom. https://doi.org/10.1093/aob/mcg079.

Ticktin, T. 2004. The ecological implications of harvesting non‐timber forest products. Journal of Applied Ecology 41:11-21. https://doi.org/10.1111/j.1365-2664.2004.00859.x.

Uprety, Y., R. C. Poudel, J. Gurung, N. Chettri, and R. P. Chaudhary. 2016. Traditional use and management of NTFPs in Kangchenjunga Landscape: implications for conservation and livelihoods. Journal of Ethnobiology and Ethnomedicine 12:1-59. https://doi.org/10.1186/s13002-016-0089-8.

Urretavizcaya, M. F., L. T. Contardi, M. Caselli, S. Gianolini, L. Bertotti, V. Alonso, and C. Huica. 2022. Manejo sostenible del Calafate en Chubut: rendimiento en poblaciones silvestres y establecimiento en plantaciones para producción. VI Jornadas Forestales Patagónicas 346-350. URL: tinyurl.com/yh7krmma.

Vaughan, R. C., J. F. Munsell, and J. L. Chamberlain. 2013. Opportunities for Enhancing Nontimber Forest Products Management in the United States. Journal of Forestry 111:26-33. https://doi.org/doi:10.5849/jof.10-106.

Veenendaal, E., M. Swaine, V. Agyeman, D. Blay, I. Abebrese, and C. Mullins. 1996. Differences in plant and soil water relations in and around a forest gap in West Africa during the dry season may influence seedling establishment and survival. Journal of Ecology 84(1):83-90. https://doi.org/10.2307/2261702.

Woodward, F. I., M. R. Lomas, and C. K. Kelly. 2004. Global climate and the distribution of plant biomes. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359:1465-1476. https://doi.org/10.1098/rstb.2004.1525.

La disponibilidad de luz limita la producción frutícola del calafate en un matorral mixto nativo (Río Negro, Argentina)

Published

2022-10-29

How to Cite

Fioroni, F., Fernández, N., Fernández, M., & Garibaldi, L. (2022). Light availability and calafate fruit production in a native mixed shrubland (Río Negro, Argentina). Ecología Austral, 32(3), 984–989. https://doi.org/10.25260/EA.22.32.3.0.1952