Assisting vizcacha (Lagostomus maximus) reintroduction: How to increase their safe foraging range?
DOI:
https://doi.org/10.25260/EA.23.33.1.0.1961Keywords:
transfer, translocation, refuges, habitat management, soft releaseAbstract
The reintroduction of fossorial mammals could be limited by the availability of satellite burrows that provide refuge from predators while foraging away from their permanent burrows, and by availability of short grasses. In order to generate information to assist in the reintroduction of vizcachas (Lagostomus maximus), we asked: 1) what type of satellite burrow do they accept based on burrow complexity, entrance size and distance from permanent burrows?, and 2) how did the provision of burrows and mowing affect their foraging range? We carried out the study in the Sierras of Cordoba, Argentina, with 13 vizcachas transferred to two adaptation pens equipped with permanent burrows. We mowed part of the vegetation around the pens and we dug 14 satellite burrows of two types: simple with only a tunnel, and complex with a tunnel and underground chamber. Burrows were situated between 1 and 16 m from the pens. For six months we evaluated satellite burrow occupancy. We also counted feces, estimated bare soil, and height of the vegetation in 15-m-long transects originating in the entrances of highly used burrows, which were distributed in two sectors. Occupancy was 2 and 67% for simple and complex satellite burrows, respectively, and was negatively related to burrow entrance size. There was no relationship between burrow occupancy and distance to adaptation pens. Transect sampling showed that 91% of the pellets were within 4 m of the pens or satellite burrows, and that they preferred cut to uncut grass. We conclude that building complex satellite burrows and mowing vegetation will increase secure foraging range for translocated vizcachas.
References
Afifi, A. A., and V. Clark. 1984. Computer aided multivariate analysis. Lifetime Learning Publications, Belmont, CA, US.
Anderson, D., and K. Burnham (eds.). 2004. Model selection and multi-model inference. A Practical Information-Theoretic Approach. Second edition. NY: Springer-Verlag. https://doi.org/10.1007/b97636.
Argañaraz, J. P., A. M. Cingolani, L. M. Bellis, and M. A. Giorgis. 2020. Fire incidence along an elevation gradient in the mountains of central Argentina. Ecología Austral 30:268-281. https://doi.org/10.25260/EA.20.30.2.0.1054.
Arias, S. M., R. D. Quintana, and M. Cagnoni. 2005. Vizcacha’s influence on vegetation and soil in a wetland of Argentina. Rangeland Ecology and Management 58:51-57. https://doi.org/10.2111/1551-5028(2005)58%3C51:VIOVAS%3E2.0.CO;2.
Barri, F. R. 2016. Reintroducing guanaco in the upper belt of Central Argentina: using population viability analysis to evaluate extinction risk and management priorities. PloS ONE 11:e0164806. https://doi.org/10.1371/journal.pone.0164806.
Berger-Tal, O., D. Blumstein, and R. R. Swaisgood. 2020. Conservation translocations: a review of common difficulties and promising directions. Animal Conservation 23:121-131. https://doi.org/10.1111/acv.12534.
Branch, L. C. 1993. Social organization and mating system of the plains viscacha (Lagostomus maximus). Journal of the Zoological of London 229:473-491. https://doi.org/10.1111/j.1469-7998.1993.tb02649.x.
Branch, L. C., D. Villarreal, R. A. Sosa, M. Pessino, M. Machicote, P. Lerner, P. Borraz, M. Urioste, and J. L. Hierro. 1994a. Estructura de las colonias de vizcachas y problemas asociados con la estimación de la densidad poblacional en base a la actividad de las vizcachas. Mastozoología Neotropical 1:135-142.
Branch, L. C., D. Villarreal, and G. S. Fowler. 1994b. Factors influencing population dynamics of the plains viscacha (Lagostomus maximus, Mammalia, Chinchillidae) in scrub habitat of central Argentina. Journal of the Zoological of London 232:383-395. https://doi.org/10.1111/j.1469-7998.1994.tb01580.x.
Branch, L. C., D. Villarreal, A. P. Sbriler, and R. A. Sosa. 1994c. Diet selection of the plains vizcacha (Lagostomus maximus, family Chinchillidae) in relation to resource abundance in semi-arid scrub. Canadian Journal of Zoology 72:2210-2216.
Branch, L. C., and R. A. Sosa. 1994. Foraging behavior of the plains vizcacha, Lagostomus maximus (Rodentia: Chinchillidae), in semi-arid scrub of Central Argentina. Vida Silvestre Neotropical 3:96-99.
Branch, L. C., D. Villarreal, J. L Hierro, and K. M Portier. 1996. Effects of local extinction of the plains vizcacha (Lagostomus maximus) on vegetation patterns in semi-arid scrub. Oecologia 106:386-399. https://doi.org/10.1007/BF00334567.
Capó, E. A., R. Aguilar, and D. Renison. 2016. Livestock reduces juvenile tree growth of alien invasive species with a minimal effect on natives: a field experiment using exclosures. Biological Invasions 18:2943-2950. https://doi.org/10.1007/s10530-016-1185-3.
Colladon, L. 2014. Anuario Pluviométrico 1992/93 - 2011/12, Cuenca del Río San Antonio. Sistema del Río Suquía - Provincia de Córdoba. Primera ed. Instituto Nacional del Agua y Centro de Investigaciones de la Región Semiárida (CIRSA), Córdoba, Argentina.
Cingolani, A. M., M. A. Giorgis, L. E. Hoyos, and M. Cabido. 2022. La vegetación de las montañas de Córdoba (Argentina) a comienzos del siglo XXI: un mapa base para el ordenamiento territorial. Boletín de la Sociedad Argentina de Botánica 57:65-100. https://doi.org/10.31055/1851.2372.v57.n1.34924.
Contarde, C. B. 2019. Caracterización espacial y patrones de actividad en una colonia de vizcachas (Lagostomus maximus) de la zona serrana del centro de Córdoba. Tesis de graduación. Escuela de Biología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba.
Cresswell, W., J. Lind, and J. L. Quinn. 2010. Predator-hunting success and prey vulnerability: quantifying the spatial scale over which lethal and non-lethal effects of predation occur. Journal of Animal Ecology 79:556-562. https://doi.org/10.1111/j.1365-2656.2010.01671.x.
D’Amico, M., Z. Tablado, E. Revilla, and F. Palomares. 2014. Free housing for declining populations: Optimizing the provision of artificial breeding structures. Journal for Nature Conservation 22:369-376. https://doi.org/10.1016/j.jnc.2014.03.006.
Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. González, M. Tablada, and C. W. Robledo. 2017. InfoStat. Córdoba, Argentina. Grupo InfoStat.
Davidson, A. D., J. K. Detling, and J. H. Brown. 2012. Ecological roles and conservation challenges of social, burrowing, herbivorous mammals in the world's grasslands. Frontiers in Ecology and the Environment 10:477-486. https://doi.org/10.1890/110054.
Fernández-Olalla, M., M. Martínez-Jauregui, F. Guil, and A. Miguel. 2010. Provision of artificial warrens as a means to enhance native wild rabbit populations: What type of warren and where should they be sited? European Journal of Wildlife Research 56:829-837. https://doi.org/10.1007/s10344-010-0377-x.
Flores, C. E., A. M. Cingolani, A. von Müller, and F. R. Barri. 2012. Habitat selection by reintroduced guanacos (Lama guanicoe) in a heterogeneous mountain rangeland of central Argentina. Rangeland Journal 34:439-445. https://doi.org/10.1071/RJ12040.
Hale, S. L., and J. L. Koprowski. 2018. Ecosystem-level effects of keystone species reintroduction: a literature review. Restoration Ecology 26:439-445. https://doi.org/10.1111/rec.12684.
Hale, S. L., J. L. Koprowski, and H. Hicks. 2013. Review of black-tailed prairie dog reintroduction strategies and site selection: Arizona reintroduction. USDA Forest Service Proceedings RMRS-P-67:310-315.
Hudson, W. H. 1872. On the habits of the vizcacha (Lagostomus trichodactylus). Proceedings of the Zoological Society of London 822-833.
Jacob, J., and J. S. Brown. 2000. Microhabitat use, giving-up densities and temporal activity as short- and long-term anti-predator behaviors in common voles. Oikos 91:131-138. https://doi.org/10.1034/j.1600-0706.2000.910112.x.
Letty, J., S. Marchandeau, and J. Aubineau. 2007. Problems encountered by individuals in animal translocations: Lessons from field studies. Ecoscience 14:420-431. https://doi.org/10.2980/1195-6860(2007)14[420:PEBIIA]2.0.CO;2.
Marcora, P., I. Hensen, D. Renison, P. Seltmann, and K. Wesche. 2008. The performance of Polylepis australis trees along their entire altitudinal range: implications of climate change for their conservation. Diversity and Distributions 14:630-636. https://doi.org/10.1111/j.1472-4642.2007.00455.x.
Matějů, J., S. Říčanová, M. Ambros, B. Kala, E. Hapl, and K. Matějů. 2010. Reintroductions of the European Ground Squirrel (Spermophilus citellus) in Central Europe (Rodentia: Sciuridae). Lynx 41:175-191.
McCullough Hennessy, S., D. Deutschman, D. Shier, L. Nordstrom, C. Lenihan, J. P. Montagne, C. Wisinski, and R. Swaisgood. 2016. Experimental habitat restoration for conserved species using ecosystem engineers and vegetation management. Animal Conservation 19:506-514. https://doi.org/10.1111/acv.12266.
Palmer, B., L. Valentine, M. Page, and R. Hobbs. 2020. Translocations of digging mammals and their potential for ecosystem restoration: a review of goals and monitoring programmes. Mammal Review 50:382-398. https://doi.org/10.1111/mam.12208.
Pereira, J. A., R. D. Quintana, and S. Monge. 2003. Diets of plains vizcacha, greater rhea and cattle in Argentina. Journal of Range Management 56:13-20. https://doi.org/10.2307/4003875.
Pia, M. V. 2013. Trophic interactions between puma and endemic culpeo fox after livestock removal in the high mountains of central Argentina. Mammalia 77:273-283. https://doi.org/10.1515/mammalia-2012-0096.
Pessino, M., J. H. Sarasola, C. Wander, and N. Besoky. 2001. Respuesta a largo plazo del puma (Puma concolor) a una declinación poblacional de la vizcacha (Lagostomus maximus) en el desierto del Monte, Argentina. Ecología Austral 11:61-67.
Puig, S., F. Videla, M. Cona, S. Monge, and V. Roig. 1998. Diet of the vizcacha Lagostomus maximus (Rodentia, Chinchillidae), habitat preferences and food availability in Northern Patagonia, Argentina. Mammalia 62:191-204. https://doi.org/10.1515/mamm.1998.62.2.191.
Pulido, M., S. Schnabel, J. F. Lavado Contador, J. Lozano-Parra, and F. González. 2018. The impact of heavy grazing on soil quality and pasture production in rangelands of SW Spain. Land Degradation and Development 29:219-230. https://doi.org/10.1002/ldr.2501.
R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: R-project.org.
Short, J., P. Copley, L. Ruykys, K. Morris, J. Read, and K. Moseby. 2019. Review of translocations of the greater stick-nest rat (Leporillus conditor): lessons learnt to facilitate ongoing recovery. Wildlife Research 46:455-475. https://doi.org/10.1071/WR19021.
Sundell, J., and H. Ylönen. 2004. Behaviour and choice of refuge by voles under predation risk. Behaviour Ecology and Sociobiology 56:263-269. https://doi.org/10.1007/s00265-004-0777-6.
Swaisgood, R., J. P. Montagne, C. Lenihan, C. Wisinski, L. Nordstrom, and D. Shier. 2019. Capturing pests and releasing ecosystem engineers: translocation of common but diminished species to re‐establish ecological roles. Animal Conservation 22:600-610. https://doi.org/10.1111/acv.12509.
Torres, R. 2018. Vizcacha. Pp. 149-153 en R. Torres and D. Tamburini (eds.). Mamíferos de Córdoba y su estado de conservación. 1° ed. Córdoba: Editorial de la UNC.
Villareal, D., K. L. Clark, L. C. Branco, J. L. Hierro, and M. Machicote. 2008. Alteration of ecosystem structure by a burrowing herbivore, the plains Vizcacha (Lagostomus maximus). Journal of Mammalogy 89:700-711. https://doi.org/10.1644/07-MAMM-A-025R1.1.
von Müller, A. R., D. Renison, and A. M. Cingolani. 2017. Cattle landscape selectivity is influenced by ecological and management factors in a heterogeneous mountain rangeland. The Rangeland Journal 39:1-14. https://doi.org/10.1071/RJ15114.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Daniel Renison, Ana M. Cingolani, Cecilia Contarde, Diego Guzmán
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors retain their rights as follows: 1) by granting the journal the right to its first publication, and 2) by registering the published article with a Creative Commons Attribution License (CC-BY 4.0), which allows authors and third parties to view and use it as long as they clearly mention its origin (citation or reference, including authorship and first publication in this journal). Authors can make other non-exclusive distribution agreements as long as they clearly indicate their origin and are encouraged to widely share and disseminate the published version of their work.