Analysis and characterization of P-solubilizing bacterial populations in a long-term field experiment with different crop sequences

Authors

  • Marcela L. Rörig Instituto de Suelos, CIRN, CNIA - INTA
  • Analía M. Rodríguez Instituto de Suelos, CIRN, CNIA - INTA
  • Ileana Frasier Instituto de Suelos, CIRN, CNIA - INTA
  • Lorena Setten Instituto de Suelos, CIRN, CNIA - INTA
  • Edit Otero Estrada Instituto de Suelos, CIRN, CNIA - INTA
  • Mariana Solans INIBIOMA, CONICET, UNComahue
  • José M. Scervino INIBIOMA, CONICET, UNComahue
  • Daniel H. Grasso Instituto de Suelos, CIRN, CNIA - INTA

DOI:

https://doi.org/10.25260/EA.23.33.1.0.1962

Keywords:

crop rotation, biofertilizers, Pseudomonas, Paenibacillus

Abstract

It is well known that different soil use and management systems affect the abundance, activity and composition of the soil microbial community. In this work, the behavior of cultivable bacterial populations and, in particular, P (PSB) solubilizing bacteria in soil samples from a long-term trial with different culture sequences was studied. The results obtained show that the clearing and subsequent agricultural use after 11 years generated a decrease in the population of cultivable bacteria in general, and of P-solubilizing bacteria in particular, with respect to the pristine soil. Isolates with high P solubilization efficiency were obtained from the soils from the different rotations. These efficient isolates were taxonomically classified by 16S RNA analysis as belonging to the genera Bacillus, Paenibacillus, Pseudomonas and Xanthomonas. In particular, the characterization of the culture supernatants of the isolates Pseudomonas koreensis and Paenibacillus pabuli showed they are producers of organic acids. The combined inoculation tests of these two strains on maize plants in a culture chamber revealed a synergistic effect on the growth promotion of this species. The results presented here suggest that although PSB populations are more numerous in pristine soils, certain long-term crop rotations favor the increase of more efficient solubilizing bacteria, an aspect that should be considered when designing future search strategies for potential bioinoculants.

References

Agaras, B. C., M. Scandiani, A. Luque, L. Fernández, F. Farina, M. Carmona, M. Gally, A. Romero, L. Wall, and C. Valverde. 2015. Quantification of the potential biocontrol and direct plant growth promotion abilities based on multiple biological traits distinguish different groups of Pseudomonas spp. isolates. Biological Control 90:173-186. https://doi.org/10.1016/j.biocontrol.2015.07.003.

Alori, E. T., B. R. Glick, and O. O. Babalola. 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology 8:1-8. https://doi.org/10.3389/fmicb.2017.00971.

Anzuay, M. S., O. Frola, J. G. Angelini, L. M. Ludueña, A. Fabra, and T. Taurian. 2013. Genetic diversity of phosphate-solubilizing peanut (Arachis hypogaea L.) associated bacteria and mechanisms involved in this ability. Symbiosis 60:143-154. https://doi.org/10.1007/s13199-013-0250-2.

Anzuay, M. S., M. G. R. Ciancio, L. M. Ludueña, J. G. Angelini, G. Barros, N. Pastor, and T. Taurian. 2017. Growth promotion of peanut (Arachis hypogaea L.) and maize (Zea mays L.) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides. Microbiological Research 199:98-109. https://doi.org/10.1016/j.micres.2017.03.006.

Bai, Y., X. Zhou, and D. L. Smith. 2003. Enhanced Soybean Plant Growth Resulting from Coinoculation of Bacillus Strains with Bradyrhizobium japonicum. Crop Science 43:1774-1781. https://doi.org/10.2135/cropsci2003.1774.

Baig, K. S., M. Arshad, B. Shaharoona, A. Khalid, and I. Ahmed. 2012. Comparative effectiveness of Bacillus spp. possessing either dual or single growth-promoting traits for improving phosphorus uptake, growth and yield of wheat (Triticum aestivum L.). Annals of Microbiology 62:1109-1119. https://doi.org/10.1007/s13213-011-0352-0.

Baldassini, P., C. E. Bagnato, and J. M. Paruelo. 2020. How may deforestation rates and political instruments affect land use patterns and Carbon emissions in the semi-arid Chaco, Argentina? Land Use Policy 99:104985. https://doi.org/10.1016/j.landusepol.2020.104985.

Bray, R. H. and L. T. Kurtz. 1945. Determination of total organic and available forms of phosphorus in soils. Soil Science 59:39-45. https://doi.org/10.1097/00010694-194501000-00006.

Chang, E. H., R. S. Chung, and Y. H. Tsai. 2007. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Science and Plant Nutrition 53:132-140. https://doi.org/10.1111/j.1747-0765.2007.00122.x.

Collavino, M. M., P. A. Sansberro, L. A. Mroginski, and O. M. Aguilar. 2010. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biology and Fertility of Soils 46:727-738. https://doi.org/10.1007/s00374-010-0480-x.

de Amaral Leite, A., A. A. De Souza Cardoso, R. De Almeida Leite, S. M. De Oliveira-Longatti, J. F. L. Filho, F. M. De Souza Moreira, and L. C. A. Melo. 2020. Selected bacterial strains enhance phosphorus availability from biochar-based rock phosphate fertilizer. Annals of Microbiology 70:6. https://doi.org/10.1186/s13213-020-01550-3.

Dick, C. F., A. L. A. Dos-Santos, and J. R. Meyer-Fernandes. 2011. Inorganic phosphate as an important regulator of phosphatases. Enzyme Research 2011. https://doi.org/10.4061/2011/103980.

Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. González, M. Tablada, and C. W. Robledo. 2017. Grupo InfoStat. FCA, Universidad Nacional de Córdoba, Argentina.

Dodor, D. E., and M. A. Tabatabai. 2003. Effect of cropping systems on phosphatases in soils. Journal of Plant Nutrition and Soil Science 166:7-13. https://doi.org/10.1002/jpln.200390016.

Fernández, L. A., P. Zalba, M. A. Gómez, and M. A. Sagardoy. 2007. Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biology and Fertility of Soils 43:805-809. https://doi.org/10.1007/s00374-007-0172-3.

Fernández, L. A., B. Agaras, L. G. Wall, and C. Valverde. 2015. Abundance and ribotypes of phosphate-solubilizing bacteria in Argentinean agricultural soils under no-till management. Annals of Microbiology 65:1667-1678. https://doi.org/10.1007/s13213-014-1006-9.

Ferreras, L., G. Magra, P. Besson, E. Kovalevski, and F. García. 2007. Indicadores de calidad física en suelos de la Región Pampeana Norte de Argentina bajo siembra directa. Ciencia del Suelo 25(2):159-172.

García, J. E., G. Maroniche, C. Creus, R. Suárez-Rodríguez, J. A. Ramirez-Trujillo, and M. D. Groppa. 2017. In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiological Research 202:21-29. https://doi.org/10.1016/j.micres.2017.04.007.

Ge, T., S. Nie, J. Wu, J. Shen, H. Xiao, C. Tong, D. Huang, Y. Hong, and K. Iwasaki. 2011. Chemical properties, microbial biomass, and activity differ between soils of organic and conventional horticultural systems under greenhouse and open field management: A case study. Journal of Soils and Sediments 11:25-36. https://doi.org/10.1007/s11368-010-0293-4.

González, C. C., F. A. Galizzi, M. C. Sánchez, A. E. Azar, O. Puig, and G. Coronel. 2014. Efecto de secuencias de cultivos en siembra directa sobre propiedades de un Molisol. XXIV Congreso Argentino de la Ciencia del Suelo. Bahía Blanca, Argentina.

Gross, A., Y. Lin, P. K. Weber, J. Pett-Ridge, and W. L. Silver. 2020. The role of soil redox conditions in microbial phosphorus cycling in humid tropical forests. Ecology 101:1-10. https://doi.org/10.1002/ecy.2928.

Grover, M., S. Bodhankar, A. Sharma, P. Sharma, J. Singh, and L. Nain. 2021. PGPR Mediated Alterations in Root Traits: Way Toward Sustainable Crop Production. Frontiers in Sustainable Food Systems 4:618230. https://doi.org/10.3389/fsufs.2020.618230.

Hariprasad, P., and S. R. Niranjana. 2009. Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant and Soil 316:13-24. https://doi.org/10.1007/s11104-008-9754-6.

Hernández Guijarro, K., F. Covacevich, V. C. Aparicio, and E. De Geronimo. 2018. Bacterias Nativas del suelo con potencial para la degradación de Glifosato y promoción del Crecimiento Vegetal. Asociación Argentina Ciencia de Suelo 36:24-137.

Hoagland, D. R., and D. I. Arnon. 1950. The water-culture method for growing plants without soil. Second edition. California Agricultural Experiment Station Circular 347:1-40.

Jackson, C. R., H. L. Tyler, and J. J. Millar. 2013. Determination of microbial extracellular enzyme activity in waters, soils, and sediments using high throughput microplate assays. Journal of Visualized Experiments. https://doi.org/10.3791/50399-v.

Kalayu, G. 2019. Phosphate solubilizing microorganisms: Promising approach as biofertilizers. International Journal of Agronomy 2019:1-7. https://doi.org/10.1155/2019/4917256.

Kaur, T., R. Devi, S. Kumar, I. Sheikh, D. Kour, and A. N. Yadav. 2022. Microbial consortium with nitrogen fixing and mineral solubilizing attributes for growth of barley (Hordeum vulgare L.). Heliyon 8(4):e09326. https://doi.org/10.1016/j.heliyon.2022.e09326.

Kaur, R., and S. Kaur. 2020. Variation in the Phosphate Solubilizing Bacteria from Virgin and the Agricultural Soils of Punjab. Current Microbiology 77:2118-2127. https://doi.org/10.1007/s00284-020-02080-6.

Korir, H., N. W. Mungai, M. Thuita, Y. Hamba, and C. Masso. 2017. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Frontiers in Plant Science 8. https://doi.org/10.3389/fpls.2017.00141.

Kumar, A. 2016. Phosphate solubilizing bacteria in agriculture biotechnology: diversity, mechanism and their role in plant growth and crop yield. International Journal of Advanced Research 4:116-124. https://doi.org/10.21474/IJAR01/111.

Kundu, B. S., K. Nehra, R. Yadav, and M. Tomar. 2009. Biodiversity of phosphate solubilizing bacteria in rhizosphere of chickpea, mustard and wheat grown in different regions of Haryana. Indian Journal of Microbiology 49(2):120-127. https://doi.org/10.1007/s12088-009-0016-y.

Liang, J. L., J. Liu, P. Jia, T. Tao Yang, Q. Wei Zeng, S. Chang Zhang, B. Liao, W. Sheng Shu, and J. Tian Li. 2020. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME Journal 14:1600-1613. https:/doi.org/10.1038/s41396-020-0632-4.

Miller, R. O. 1998. Nitric-perchloric acid wet digestion in an open vessel. Pp. 57-62 en Y. P. Kalra (ed.). Handbook of Reference Methods for Plant Analysis, CRC Press, Washington DC, USA. https://doi.org/10.1201/9781420049398.ch6.

Mohd Din, A. R. J., M. A. Rosli, Z. Mohamad Azam, N. Z. Othman, and M. R. Sarmidi. 2020. Paenibacillus polymyxa Role Involved in Phosphate Solubilization and Growth Promotion of Zea mays Under Abiotic Stress Condition. Proceedings of the National Academy of Sciences India Section B - Biological Sciences 90:63-71. https://doi.org/10.1007/s40011-019-01081-1.

Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters 170:265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x.

Nicolitch, O., M. Feucherolles, J. L. Churin, L. Fauchery, M. P. Turpault, and S. Uroz. 2016. A microcosm approach highlights the response of soil mineral weathering bacterial communities to an increase of K and Mg availability. Sci Rep 9:14403 https://doi.org/10.1038/s41598-019-50730-y.

Pérez-Montaño, F., C. Alías-Villegas, R. A. Bellogín, P. Del Cerro, M. R. Espuny, I. Jiménez-Guerrero, F. J. López-Baena, F. J. Ollero, and T. Cubo. 2014. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research 169:325-336. https://doi.org/10.1016/J.MICRES.2013.09.011.

Pruesse,E., J. Peplies, and F. O. Glöckner. 2012. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823-1829. https://doi.org/10.1093/bioinformatics/bts252.

Revelli, R. G., R. C. Gagliardi, O. A. Sbodio, and E. J. Tercero. 2010. Propiedades fisicoquímicas en suelos predominantes del noroeste de Santa Fe y sur de Santiago del Estero, Argentina. Ciencia del Suelo 28:123-130.

Richardson, A. E., J. M. Barea, A. M. McNeill, and C. Prigent-Combaret. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil 321:305-339. https://doi.org/10.1007/s11104-009-9895-2.

Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.

Solans, M., M. I. Messuti, G. Reiner, M. Boenel, G. Vobis, L. G. Wall, and J. M. Scervino 2019. Exploring the response of Actinobacteria to the presence of phosphorus salts sources: Metabolic and co-metabolic processes. Journal of Basic Microbiology 59:487-495. https://doi.org/10.1002/jobm.201800508.

Stefan, M., N. Munteanu, V. Stoleru, M. Mihasan, and L. Hritcu. 2013. Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.). Scientia Horticulturae 151:22-29. https://doi.org/10.1016/j.scienta.2012.12.006.

Tian, J., M. Fan, J. Guo, P. Marschner, X. Li, and Y. Kuzyakov. 2012. Effects of land use intensity on dissolved organic carbon properties and microbial community structure. European Journal of Soil Biology 52:67-72. https://doi.org/10.1016/j.ejsobi.2012.07.002.

Vázquez, P., G. Holguin, M. E. Puente, A. Lopez-Cortes, and Y. Bashan. 2000. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils 30:460-468. https://doi.org/10.1007/s003740050024.

Versalovic, J., T. Koeuth, and R. Lupski. 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerpriting of bacterial genomes. Nucleic Acids Research 19:6823-6831. https://doi.org/10.1093/nar/19.24.6823.

Walkley, A. and I. A. Black. 1934. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37:29-38. https://doi.org/10.1097/00010694-193401000-00003.

Walpola, B. C., and M. Yoon. 2013. In vitro solubilization of inorganic phosphates by phosphate solubilizing microorganisms. African Journal of Microbiology Research 7:3534-3541.

Watanabe, F. S., and S. R. Olsen. 1965. Test of an Ascorbic Acid Method for Determining Phosphorus in Water and NaHCO3 Extracts from Soil. Soil Science Society of America Journal 29:677-678. https://doi.org/10.2136/sssaj1965.03615995002900060025x.

Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173:697-703. https://doi.org/10.1128/jb.173.2.697-703.1991.

Widdig, M., P. M. Schleuss, A. R. Weig, A. Guhr, L. A. Biederman, E. T. Borer, M. J. Crawley, K. P. Kirkman, E. W. Seabloom, P. D. Wragg, and M. Spohn. 2019. Nitrogen and Phosphorus Additions Alter the Abundance of Phosphorus-Solubilizing Bacteria and Phosphatase Activity in Grassland Soils. Frontiers in Environmental Science 7:1-15. https://doi.org/10.3389/fenvs.2019.00185.

Yu, X., X. Liu, T. H. Zhu, G. H. Liu, and C. Mao. 2011. Isolation and characterization of phosphate-solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization. Biology and Fertility of Soils 47:437-446. https://doi.org/10.1007/s00374-011-0548-2.

Analysis and characterization of P-solubilizing bacterial populations in a long-term field experiment with different crop sequences

Published

2023-02-11

How to Cite

Rörig, M. L., Rodríguez, A. M., Frasier, I., Setten, L., Otero Estrada, E., Solans, M., Scervino, J. M., & Grasso, D. H. (2023). Analysis and characterization of P-solubilizing bacterial populations in a long-term field experiment with different crop sequences. Ecología Austral, 33(1), 124–135. https://doi.org/10.25260/EA.23.33.1.0.1962