Where, when and how is the occurrence of large fires in La Pampa province, Argentina: A remote sensing characterization

Authors

  • Milagros Sanchez Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, UBA. Buenos Aires, Argentina
  • Pablo Baldassini Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, UBA. Buenos Aires, Argentina. IFEVA, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto Nacional de Investigación Agropecuaria, INIA La Estanzuela, Colonia, Uruguay
  • María de los Á. Fischer Instituto de Clima y Agua, Instituto Nacional de Tecnología Agropecuaria (INTA). Buenos Aires, Argentina
  • Joaquín Torre Zaffaroni
  • Carlos M. Di Bella Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, UBA. Buenos Aires, Argentina. IFEVA, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

DOI:

https://doi.org/10.25260/EA.23.33.1.0.1972

Keywords:

fires, remote sensing, climate-vegetation interaction, severity, MODIS

Abstract

Fire, as a catastrophic phenomenon, is devastating, dangerous and costly for a region. Despite its relevance, little is known about the spatial and temporal dynamics of this phenomenon in the province of La Pampa. The general objective of this work was to identify and characterize the fires, particularly the most extensive ones, that occurred in the province of La Pampa during the period July 2001-June 2017 (16 campaigns), based on the use of information provided by remote sensors. For this, information from MODIS Rapid Response heat sources, distributed by the FIRMS web system, was used. Combining information from spectral indices (NBR), precipitation data and vegetation types, the influence of predisposing factors on the occurrence of these events was studied It was observed that, in the analyzed period, between 21200 and 667500 ha/year were burned, with an average event size of 708 ha. However, in the last four seasons, an increase was recorded both in the total area burned and in the number of events ≥5 thousand ha. In the last campaign, in addition to registering the largest burned area (667500 ha), the largest number of events (10) ≥10 thousand ha (50% of the total events in this category) were observed. The total burned area in a campaign was positively related to the rainfall of the previous campaign (R2=0.76, P<0.001). The most affected vegetation was the xeric forest, followed to a lesser extent by the carob forests and the steppes and psamophilic scrubs. It is expected that the characterization of the spatial and temporal dynamics of fires using sensors will contribute to the design of prevention, early warning and control systems in the region.

References

Agee, J. K. 1993. Fire ecology of Pacific Northwest forests. Washington, D.C. Island Press. Pp. 493.

Argañaraz, J. P., G. G. Pizarro, M. Zak, M. A. Landi, and L. M. Bellis. 2015. Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina. Science of the Total Environment 520:1-12. https://doi.org/10.1016/j.scitotenv.2015.02.081.

Barber, C. B., D. P. Dobkin, and H. Huhdanpaa. 1996. The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software (TOMS) 22(4):469-483. https://doi.org/10.1145/235815.235821.

Bradstock, R. A., J. S. Cohn, A. M. Gill, M. Bedward, and C. Lucas. 2010. Prediction of the probability of large fires in the Sydney region of south-eastern Australia using fire weather. International Journal of Wildland Fire 18(8):932-943. https://doi.org/10.1071/WF08133.

Cases, F., and D. Pombo. 2019. Evaluación de áreas afectadas por incendios forestales mediante el uso de imágenes satélites: Parque Lihué Calel (La Pampa). In XXI Jornadas de Geografía de la UNLP 9 al 11 de octubre de 2019 Ensenada, Argentina. Construyendo una Geografía Crítica y Transformadora: En defensa de la Ciencia y la Universidad Pública. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación. Departamento de Geografía.

Chuvieco, E. 2003. Wildland fire danger: estimation and mapping: the role of remote sensing data (Vol. 4). World Scientific. https://doi.org/10.1142/5364.

Chuvieco, E., L. Giglio, and C. Justice. 2008. Global characterization of fire activity: toward defining fire regimes from Earth observation data. Global Change Biology 14(7):1488-1502. https://doi.org/10.1111/j.1365-2486.2008.01585.x.

Chuvieco, E. 2009. Earth observation of wildland fires in Mediterranean ecosystems. Dordrecht, The Netherlands: Springer. Pp. 251. https://doi.org/10.1007/978-3-642-01754-4.

Chuvieco, E., J. Lizundia-Loiola, M. L. Pettinari, R. Ramo, M. Padilla, et al. 2018. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth System Science Data 10(4):2015-2031. https://doi.org/10.5194/essd-10-2015-2018.

Clarke, H., T. Penman, M. Boer, G. J. Cary, J. B. Fontaine, et al. 2020. The proximal drivers of large fires: a pyrogeographic study. Frontiers in Earth Science 8:90. https://doi.org/10.3389/feart.2020.00090.

Cocke, A. E., P. Z. Fulé, and J. E. Crouse. 2005. Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data. International Journal of Wildland Fire 14(2):189-198. https://doi.org/10.1071/WF04010.

Dı́az-Delgado, R., and X. Pons. 2001. Spatial patterns of forest fires in Catalonia (NE of Spain) along the period 1975-1995: analysis of vegetation recovery after fire. Forest Ecology and Management 147(1):67-74. https://doi.org/10.1016/S0378-1127(00)00434-5.

Di Bella, C. M., E. G. Jobbágy, J. M. Paruelo, and S. Pinnock. 2006. Continental fire density patterns in South America. Global Ecology and Biogeography 15(2):192-199. https://doi.org/10.1111/j.1466-822X.2006.00225.x.

Di Bella, C. M., M. A. Fischer, and E. G. Jobbágy. 2011. Fire patterns in north-eastern Argentina: influences of climate and land use/cover. International Journal of Remote Sensing 32(17):4961-4971. https://doi.org/10.1080/01431161.2010.494167.

Di Bella, C. M., and G. Posse. 2014. Estudio y seguimiento de los incendios. Percepción remota y sistemas de información geográfica. Sus aplicaciones en Agronomía y Ciencias Ambientales. J. M. Paruelo, C. M. Di Bella y M. Milkovic (eds.). Editorial Hemisferio Sur.

Di Bella, C. M., M. E. Beget, A. N. Campos, E. F. Viglizzo, E. G. Jobbágy, et al. 2019. Changes in vegetation seasonality and livestock stocking rate in La Pampa Province (Argentina). Revista de la Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo 51(1):79-92.

Diharce, M. C., M. Herlein, and B. Dillon. 2018. Incendios en La Pampa: un análisis en el impacto territorial (2016-2018). Como ensenar estos contenidos en la escuela secundaria. V Jornadas Nacionales de Investigación en Geografía Argentina. Tandil, Buenos Aires.

Dimitrakopoulos, A. P., and K. K. Papaioannou. 2001. Flammability assessment of Mediterranean forest fuels. Fire Technology 37(2):143-152. https://doi.org/10.1023/A:1011641601076.

Eidenshink, J., B. Schwind, K. Brewer, Z. L. Zhu, B. Quayle, et al. 2007. A project for monitoring trends in burn severity. Fire Ecology 3(1):3-21. https://doi.org/10.4996/fireecology.0301003.

Escuin, S., R. Navarro, and P. Fernández. 2008. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation 52 Index) derived from LANDSAT TM/ETM images. International Journal of Remote Sensing 29(4):1053-1073. https://doi.org/10.1080/01431160701281072.

Fischer, M. A. 2008. Condiciones de la vegetación que favorecen la ocurrencia, propagación y duración de los incendios en la Región Semiárida Argentina. Tesis de Magister Science. Universidad de Buenos Aires, Buenos Aires. Argentina.

Fischer, M. A., C. M. Di Bella, and E.G. Jobbágy. 2012. Fire patterns in central semiarid Argentina. Journal of Arid Environments 78:161-168. https://doi.org/10.1016/j.jaridenv.2011.11.009.

Fischer, M. D. L. A., C. M. Di Bella, and E. G. Jobbágy. 2015. Influence of fuel conditions on the occurrence, propagation and duration of wildland fires: A regional approach. Journal of Arid environments 120:63-71. https://doi.org/10.1016/j.jaridenv.2015.04.007.

Gastwirth, J. L. 1972. The estimation of the Lorenz curve and Gini index. The Review of Economics and Statistics 306-316. https://doi.org/10.2307/1937992.

Giglio, L., J. Descloitres, C. O. Justice, and Y. J. Kaufman. 2003. An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment 87(2-3):273-282. https://doi.org/10.1016/S0034-4257(03)00184-6.

Giglio, L., J. T. Randerson, G. R. Van der Werf, P. S. Kasibhatla, G. J. Collatz, et al. 2010. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences 7(3). https://doi.org/10.5194/bg-7-1171-2010.

Gill, A. M., and G. Allan. 2009. Large fires, fire effects and the fire-regime concept. International Journal of Wildland Fire 17(6):688-695. https://doi.org/10.1071/WF07145.

Glave, A. 2006. Influencia climática en el sudoeste bonaerense y sudeste de La Pampa. ACAECER Revista de la Asociación de Cooperativas Argentinas 31(360).

Hardy C. C., D. L. Brunnell, J. P. Menakis, K. M. Schmidt, D. G. Long, et al. 1999. Coarse-scale spatial data for wildland fire and fuel management. USDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory.

Heip, C., and P. Engels. 1974. Comparing Species Diversity and Evenness Indices. Journal of the Marine Biological Association of the United Kingdom 54(03):559. https://doi.org/10.1017/S0025315400022748.

Hessburg, P. F., T. A. Spies, D. A. Perry, C. N. Skinner, A. H. Taylor, et al. 2016. Tamm review: management of mixed-severity fire regime forests in Oregon, Washington, and Northern California. Forest Ecology and Management 366:221-250. https://doi.org/10.1016/j.foreco.2016.01.034.

Ibañez, J. J., S. De-Albs, F. F. Bermúdez, and A. García-Álvarez. 1995. Pedodiversity: concepts and measures. Catena 24(3):215-232. https://doi.org/10.1016/0341-8162(95)00028-Q.

INTA, U. 1980. Inventario integrado de los recursos naturales de la Provincia de La Pampa: clima, geomorfología, suelo y vegetación. INTAU. N. de La Pampa.

INTA. 2017. Informe técnico: Incendios en la provincia de La Pampa 02/01/2017 - 10/01/2017. Estado de Situación. INTA. EEA Anguil. Área de Gestión Ambiental y Recursos Naturales. URL: tinyurl.com/3udf4tke.

IPCC. 2022. Summary for Policymakers. Pp. 3-33 en H.-O. Pörtner, D. C. Roberts, E. S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller and A. Okem (eds.). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA. https://doi.org/10.1017/9781009325844.001.

Kunst, C. R., S. Bravo, and J. L. Panigatti (eds.). 2003. Fuego: En los Ecosistemas Argentinos. INTA. EEA. Santiago del Estero.

Kyereh, B., R. Ninnoni, and V. K. Agyeman. 2006. Degraded forests are more susceptible to forest fires: Some possible ecological explanations. Journal of Science and Technology (Ghana) 26(2):40-47. https://doi.org/10.4314/just.v26i2.32987.

Long, T., Z. Zhang, G. He, W. Jiao, C. Tang, et al. 2019. 30 m resolution global annual burned area mapping based on Landsat Images and Google Earth Engine. Remote Sensing 11(5):489. https://doi.org/10.3390/rs11050489.

Marcos, R., M. Turco, J. Bedía, M. C. Llasat, and A. Provenzale. 2015. Seasonal predictability of summer fires in a Mediterranean environment. International Journal of Wildland Fire 24(8):1076-1084. https://doi.org/10.1071/WF15079.

Mari, N., C. Di Bella, M. D. L. A. Fischer, and F. Ferrer. Respuesta Espectral de la vegetación quemada para distintos Ecosistemas de la Argentina. XII Congreso de la Asociación Española de Teledetección. Mar del Plata, Argentina.

Martin, R. E., and J. B. L Kauffman. 1989. Use of prescribed fire to reduce wildfire potential. Pp. 17-22 en N. H. Berg (coord.). Proceedings of the Symposium on Fire and Watershed Management: October 26-28, 1988, Sacramento, California. Gen. Tech. Rep. PSW-109. Berkeley, Calif.: US Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station. Vol. 109.

Martínez, J., C. Vega-García, and E. Chuvieco. 2009. Human-caused wildfire risk rating for prevention planning in Spain. Journal of Environmental Management 90(2):1241-1252. https://doi.org/10.1016/j.jenvman.2008.07.005.

McWethy, D. B., T. Schoennagel, P. E. Higuera, M. Krawchuk, B. J. Harvey, et al. 2019. Rethinking resilience to wildfire. Nature Sustainability 2(9):797-804. https://doi.org/10.1038/s41893-019-0353-8.

Medina, A. A. 2007. Reconstrucción de los regímenes de fuego en un bosque de Prosopis caldenia, provincia de La Pampa, Argentina. Bosque (Valdivia) 28(3):234-240. https://doi.org/10.4067/S0717-92002007000300008.

Medina, A. A. 2008. Cicatrices de fuego en el leño de Prosopis caldenia en Luán Toro, provincia de La Pampa, Argentina. Bosque (Valdivia) 29(2):115-119. https://doi.org/10.4067/S0717-92002008000200003.

Medus, N. B., H. A. Alfageme, A. Socolovsky, M. S. Poey, E. B. Martín, et al. 2008. El desarrollo local en la gestión del territorio: La sinergia entre lo agropecuario y el Caldenal. Departamento Loventué, La Pampa, Argentina.

Meyn, A., P. S. White, C. Buhk, and A. Jentsch. 2007. Environmental drivers of large, infrequent wildfires: the emerging conceptual model. Progress in Physical Geography 31(3):287-312. https://doi.org/10.1177%2F0309133307079365.

Miller, J. D., and A. E. Thode. 2007. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment 109(1):66-80. https://doi.org/10.1016/j.rse.2006.12.006.

Ministerio de Ambiente y Desarrollo Sostenible. 2016. Informe Nacional de Peligro de Incendios de Vegetación 2016. Programa de Evaluación de Peligro y Alerta Temprana Coordinación de Desarrollo Técnico Servicio Nacional de Manejo del Fuego Ministerio de Ambiente y Desarrollo Sustentable. URL: https://zdocs.mx/doc/informe-nacional-de-peligro-de-incendios-de-vegetacion-7p4m24rdr5pj.

Ministerio de Ambiente y Desarrollo Sostenible. 2018. Áreas afectadas por incendios forestales y rurales en la región pampeana y noreste de la región patagónica durante la temporada 2016-2017. URL: https://www.argentina.gob.ar/sites/default/files/ambiente-it13_incendios_2016-2017.pdf.

Ministerio de Ambiente y Desarrollo Sostenible. 2020. Datos Abiertos de Ambiente y Desarrollo Sostenible. URL: datos.ambiente.gob.ar/dataset.

Ministerio de Ambiente y Desarrollo Sostenible. 2022. Servicio Nacional de Manejo del Fuego. URL: argentina.gob.ar/ambiente/manejo-del-fuego.

Mitchell, R. J., Y. Liu, J. J. O’Brien, K. J. Elliott, G. Starr, et al. 2014. Future climate and fire interactions in the southeastern region of the United States. Forest Ecology and Management 327:316-326. https://doi.org/10.1016/j.foreco.2013.12.003.

Morgan, J. 1962. The anatomy of income distribution. The Review of Economics and Statistics 44(3):270-283. https://doi.org/10.2307/1926398.

Moritz, M. A., E. Batllori, R. A. Bradstock, A. M. Gill, J. Handmer, et al. 2014. Learning to coexist with wildfire. Nature 515(7525):58-66. https://doi:10.1038/nature13946.

Nasi, R., R. Dennis, E. Meijaard, G. Applegate, and P. Moore. 2002. Los incendios forestales y la diversidad biológica. Unasylva (FAO).

Neary, D. G., K. C. Ryan, and L. F. DeBano. 2005. Wildland fire in ecosystems: effects of fire on soils and water. Gen. Tech. Rep. RMRS-GTR-42-vol. 4:250. https://doi.org/10.2737/RMRS-GTR-42-V4.

Ortellado, M. R. 2020. Incendios, inundaciones y sequías en la pampa entre 1998 y 2018. Una mirada desde la perspectiva del riesgo y desastre ambiental. Semiárida 30(2):19-36. https://doi.org/10.19137/semiarida.2020(02).19-36.

Oyarzabal, M., J. Clavijo, L. Oakley, F. Biganzoli, et al. 2018. Unidades de vegetación de la Argentina. Ecología austral 28(1):040-063. https://doi.org/10.25260/EA.18.28.1.0.399.

Peláez, D. V., M. D. Mayor, and O. R. Elia. 2008. Ecología y manejo del fuego en el Caldenal. AgroUNS 5(9):14-17.

Peters, D. P., R. A. Pielke, B. T. Bestelmeyer, C. D. Allen, S. Munson-McGee, et al. 2004. Cross-scale interactions, nonlinearities, and forecasting catastrophic events. Proceedings of the National Academy of Sciences of the United States of America 101(42):15130-15135. https://doi.org/10.1073/pnas.0403822101.

Pielou, E. C. 1966. The measurement of diversity in different types of biological collections. J Theor Biol 13:131-144. https://doi.org/10.1016/0022-5193(66)90013-0.

Pausas, J. G., and J. E. Keeley. 2021. Wildfires and global change. Frontiers in Ecology and the Environment 19(7):387-395. https://doi.org/10.1002/fee.2359.

Pla, L. 2006. Biodiversidad: Inferencia basada en el índice de Shannon y la riqueza. Interciencia 31(8): 583-590. URL: redalyc.org/articulo.oa?id=33911906.

Reisen, F., S. M. Duran, M. Flannigan, C. Elliott, and K. Rideout. 2015. Wildfire smoke and public health risk. International Journal of Wildland Fire 24(8):1029-1044. https://doi.org/10.1071/WF15034.

Roberto, Z., E. Adema, and T. Rucci. 2005. Relevamiento fisonómico de la vegetación en el área del Caldenal. INTA EEA Anguil. Publicación Técnica Nº 60.

Roberto, Z., E. Frasier, P. Goyeneche, F. González, and E. Adema. 2009. Evolución de la carga animal en la provincia de La Pampa. Publicación Técnica (74):1-26.

Romero‐Ruiz, M., A. Etter, A. Sarmiento, and K. Tansey. 2010. Spatial and temporal variability of fires in relation to ecosystems, land tenure and rainfall in savannas of northern South America. Global Change Biology 16(7):2013-2023. https://doi.org/10.1111/j.1365-2486.2009.02081.x.

Roy, D. P., L. Boschetti, and S. N. Trigg. 2006. Remote sensing of fire severity: assessing the performance of the normalized burn ratio. IEEE Geoscience and Remote Sensing Letters 3(1):112-116. https://doi.org/10.1109/LGRS.2005.858485.

Sayre, R., J. Dangermond, C. Frye, R. Vaughan, P. Aniello, et al. 2014. A new map of global ecological land units—an ecophysiographic stratification approach. Washington, DC: Association of American Geographers.

Schmidt, I. B. 2021. Managing Fire to Avoid Wildfires in Fire-prone Ecosystems (No. EGU21-10273). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-10273.

Secretaría de Ambiente y Desarrollo Sustentable de la Nación. 2007. Primer inventario nacional de bosques nativos. Segunda etapa: inventario de campo de la región espinal distritos Caldén y Ñandubay. 1a ed. Pp. 154.

Shannon, C. E., and W. Weaver. 1949. The mathematical theory of communication. Univ. Illinois Press, Urbana. Pp. 117.

Sierra, E. M., M. Conde Prat, and S. I. L. V. I. A. Pérez. 1995. La migración de cultivos de granos como indicador del cambio climático 1941-93 en la Región Pampeana Argentina. Rev Fac Agr 15(2-3):171-176.

Starns, H. D., S. D. Fuhlendorf, R. D. Elmore, D. Twidwell, E. T. Thacker, et al. 2019. Recoupling fire and grazing reduces wildland fuel loads on rangelands. Ecosphere 10(1):e02578. https://doi.org/10.1002/ecs2.2578.

Stephens, S. L., J. D. McIver, R. E. Boerner, C. J. Fettig, J. B. Fontaine, et al. 2012. The effects of forest fuel-reduction treatments in the United States. BioScience 62(6):549-560. https://doi.org/10.1525/bio.2012.62.6.6.

Stocks, B. J., J. A. Mason, J. B. Todd, E. M. Bosch, B. M. Wotton, et al. Skinner. 2002. Large forest fires in Canada, 1959-1997. Journal of Geophysical Research: Atmospheres 107(D1). https://doi.org/10.1029/2001JD000484.

Sugihara, N. G., J. W. van Wagtendonk, K. E. Shaffer, J. Fires-Kaufmann, and A. E. Thode (eds.). 2006. Fire in California ecosystems Berkeley, CA: University of California Press. Pp. 596.

Van Wagner, C. E. 1987. Development and structure of the Canadian forest fire weather index system (Vol. 35). Ottawa: Canadian Forestry Service.

Vázquez, P. 2017. Prevención de Incendios en la región árida - semiárida aledaña al río Colorado: pronóstico temprano de peligrosidad. Período diciembre 2017 - marzo 2018. INTA. URL: tinyurl.com/bdebnr8m.

Viegas, D. X. 2007. Climate, Man and forest fires. Elements for Life 148-149.

Viglizzo, E. F., Z. E. Roberto, M. C. Filippin, and A. J. Pordomingo. 1995. Climate variability and agroecological change in the Central Pampas of Argentina. Agriculture, Ecosystems and Environment 55(1):7-16. https://doi.org/10.1016/0167-8809(95)00608-U.

Vivalda, F. L. 2020. Efecto del fuego sobre la estructura y densidad de leñosas del bosque de Prosopis caldenia (Burkart) en La Pampa, Argentina. Tesis de maestría. Facultad de Agronomía, Universidad Nacional de La Pampa, Argentina.

Williams, J. 2013. Exploring the onset of high-impact mega-fires through a forest land management prism. Forest Ecology and Management 294:4-10. https://doi.org/10.1016/j.foreco.2012.06.030.

Wooster, M. J., G. J. Roberts, L. Giglio, D. P. Roy, and P. H. Freeborn, et al. 2021. Satellite remote sensing of active fires: History and current status, applications and future requirements. Remote Sensing of Environment 267:112694. https://doi.org/10.1016/j.rse.2021.112694.

Xu, W., M. J. Wooster, J. He, and T. Zhang. 2021. Improvements in high-temporal resolution active fire detection and FRP retrieval over the Americas using GOES-16 ABI with the geostationary Fire Thermal Anomaly (FTA) algorithm. Science of Remote Sensing 3:100016. https://doi.org/10.1016/j.srs.2021.100016.

Yitzhaki, S. 1983. On an extension of the Gini inequality index. International Economic Review 24(3):617-628. https://doi.org/10.2307/2648789.

Where, when and how is the occurrence of large fires in La Pampa province, Argentina: A remote sensing characterization

Published

2023-02-12

How to Cite

Sanchez, M., Baldassini, P., Fischer, M. de los Á., Torre Zaffaroni, J., & Di Bella, C. M. (2023). Where, when and how is the occurrence of large fires in La Pampa province, Argentina: A remote sensing characterization. Ecología Austral, 33(1), 211–228. https://doi.org/10.25260/EA.23.33.1.0.1972