Interspecific variation of pollinator assemblages in Nierembergia (Solanaceae) in relation to geographic location and phenotypic variation of flowers

Authors

  • Constanza C. Maubecin Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, CONICET, FCEFyN. Córdoba, Argentina.
  • María N. Augusto Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, CONICET, FCEFyN. Córdoba, Argentina.
  • Alicia N. Sérsic Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, CONICET, FCEFyN. Córdoba, Argentina.

DOI:

https://doi.org/10.25260/EA.22.32.3.0.1977

Keywords:

plant-pollinator interactions, oil-collecting bees, macroevolutionary ecology, floral phenotype, phylogenetic relationships, geographic variation

Abstract

Understanding how the interactions of related plant species with pollinators vary on a spatial scale provides the opportunity to establish links between macroevolutionary patterns and microevolutionary processes, as well as to approach the mechanisms underlying plant diversification. In this work, we explore the variation in pollinator assemblages of 15 species and varieties of Nierembergia (Solanaceae) across the distribution range of the genus in Argentina, in relation to variation in floral phenotype and geographic location. By field observations, morphometric measurements of flowers and comparative phylogenetic methods, pollinator assemblages and flowers of Nierembergia taxa were characterized and compared, and the association between pollinator assemblage composition, geographic location, floral morphology and phylogenetic relationships was evaluated. 13 species of oil-collecting bees were recorded as pollinators. The assemblage composition was strongly associated with geographic location, that is, Nierembergia taxa in nearby areas had greater similarity in their pollinator assemblages than geographically distant taxa. This pattern was not associated with phylogenetic relationships among taxa, except for a group of high mountain species in northwestern Argentina. On the other hand, interspecific variation was found in the floral phenotype, mainly in the corolla and the oil-producing gland size. However, Nierembergia taxa with similar floral phenotypes did not share the composition of the pollinator assemblage, as expected. In conclusion, we found a mixed macroevolutionary pattern in which some phylogenetically distant Nierembergia taxa converge geographically in the composition of pollinator assemblages, while this attribute is conserved in a phylogenetic clade. This pattern suggests that the role of pollinators in Nierembergia diversification is more complex than previously thought.

References

Acosta, M. C., E. A. Moscone, and A. A. Cocucci. 2015. Using chromosomal data in the phylogenetic and molecular dating framework: karyotype evolution and diversification in Nierembergia (Solanaceae) influenced by historical changes in sea level. Plant Biology 18(3):514-526. https://doi.org/10.1111/plb.12430.

Aguiar, A. J. C., and G. A. R. Melo. 2009. Notes on oil sources for the bee genus Caenonomada (Hymenoptera, Apidae, Tapinotaspidini). Revista Brasileira de Entomologia 53:154-156. https://doi.org/10.1590/S0085-56262009000100033.

Aliscioni, S. S., N. E. Gomiz, J. I. Agüero, and J. P. Torretta. 2021. Structural diversity of elaiophores in Argentine species of Malpighiaceae: morphology, anatomy, and interaction with pollinators. Protoplasma 1-19. https://doi.org/10.1007/s00709-021-01699-x.

Alves-dos-Santos, I., I. C. Machado, and M. C. Gaglianone. 2007. História natural das abelhas coletoras de óleo. Oecologia Brasiliensis 11(4):554-557. https://doi.org/10.4257/oeco.2007.1104.06.

Anacker, B. L., and S. Y. Strauss. 2014. The geography and ecology of plant speciation: range overlap and niche divergence in sister species. Proceedings of the Royal Society B‐Biological Sciences 281:20132980. http://doi.org/10.1098/rspb.2013.2980.

Arbuckle, K., and M. P. Speed. 2016. Analysing Convergent Evolution: A Practical Guide to Methods. Pp. 23-36 in P. Pontarotti (eds.). Evolutionary Biology. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-41324-2.

Baranzelli, M. C., L. A. Johnson, A. Cosacov, and A. N. Sérsic. 2014. Historical and ecological divergence among populations of Monttea chilensis (Plantaginaceae), an endemic endangered shrub bordering the Atacama Desert, Chile. Evolutionary Ecology 28(4):751-774. https://doi.org/10.1007/s10682-014-9694-y.

Buchmann, S. L. 1987. The ecology of oil flowers and their bees. Annual Review of Ecology and Systematics 18:343-369. https://doi.org/10.1146/annurev.es.18.110187.002015.

Cocucci, A. A. 1991. Pollination biology of Nierembergia (Solanaceae). Plant Systematics and Evolution 174:17-35. https://doi.org/10.1007/BF00937691.

Cocucci, A. A., and A. T. Hunziker. 1995. Estudios sobre Solanaceae. XLI. Nierembergia linariaefolia y N. pulchella: sus sinónimos y variedades. Darwiniana 33(1-4):35-42.

Cocucci, A. A., A. Sérsic, and A. Roig-Alsina. 2000. Oil-collecting structures in Tapinotaspidini: their diversity, function and probable origin. Mitteilungen der Münchner Entomologischen Gesellschaft 90:51-74.

Cosacov, A., J. Nattero, and A. A. Cocucci. 2008. Variation of pollinator assemblages and pollen limitation in a locally specialized system: the oil-producing Nierembergia linariifolia (Solanaceae). Annals of Botany 102:723-734. https://doi.org/10.1093/aob/mcn154.

Cosacov, A., A. A. Cocucci, and A. N. Sérsic. 2014. Geographical differentiation in floral traits across the distribution range of the Patagonian oil-secreting Calceolaria polyrhiza: do pollinators matter? Annals of Botany 113(2):251-266. https://doi.org/10.1093/aob/mct239.

Dodd, M. E., J. Silvertown, and M. W. Chase. 1999. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution 53(3):732-744. https://doi.org/10.1111/j.1558-5646.1999.tb05367.x.

Faegri, K., and L. Van der Pijl. 1979. The principles of pollination ecology. Oxford: Pergamon. https://doi.org/10.1016/B978-0-08-023160-0.50020-7.

Fenster, C. B., W. S. Armbruster, P. Wilson, M. R. Dudash, and J. D. Thomson. 2004. Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics 35: 375-403. https://doi.org/10.1146/annurev.ecolsys.34.011802.132347.

Ferreiro, G., M. C. Baranzelli, A. N. Sérsic, A. N., and A. A. Cocucci. 2015. Clinal variability of oil and nectar rewards in Monttea aphylla (Plantaginaceae): relationships with pollinators and climatic factors in the Monte Desert. Botanical Journal of the Linnean Society 178(2):314-328. https://doi.org/10.1111/boj.12280.

Herrera, C. M., M. C. Castellanos, and M. Medrano. 2006. Geographical context of floral evolution: towards an improved research programme in floral diversification. Pp. 278-294 en L. D. Harder and S. C. H. Barret (eds.). Ecology and Evolution of flowers. Oxford University Press, New York.

Hunziker, A. T., A. A. Cocucci, and R. Subils. 1995. Subtribu VIIb. Nierembergiinae Hunz. et Cocucci. Flora fanerogamica Argentina: Solanaceae, Córdoba. Profora 15:3-17.

Johnson, S. D., and K. E. Steiner. 2000. Generalization versus specialization in plant pollination systems. Trends in Ecology and Evolution 15:140-143. https://doi.org/10.1016/S0169-5347(99)01811-X.

Losos, J. B. 2009. Lizards in an evolutionary tree: ecology and adaptive radiation of anoles. University of California Press, Berkeley, CA. https://doi.org/10.1525/california/9780520255913.001.0001.

Martins, A. C., A. J. Aguiar, and I. Alves-dos-Santos. 2013. Interaction between oil-collecting bees and seven species of Plantaginaceae. Flora-Morphology, Distribution, Functional Ecology of Plants 208(7):401-411. https://doi.org/10.1016/j.flora.2013.07.001.

Martins, A. C., G. A. Melo, and S. S. Renner. 2015. Gain and loss of specialization in two oil-bee lineages, Centris and Epicharis (Apidae). Evolution 69:1835-1844. https://doi.org/10.1111/evo.12689.

Maubecin, C. C. 2019. El rol de los polinizadores y la historia filogenética sobre la divergencia, integración y modularidad del fenotipo floral de Nierembergia (Solanaceae). Ph Thesis, Universidad Nacional de Córdoba. Córdoba, Argentina.

Maubecin, C. C., L. Boero, and A. N. Sérsic. 2020. Specialisation in pollen collection, pollination interactions and phenotypic variation of the oil-collecting bee Chalepogenus cocuccii. Apidologie 51(5):710-723. https://doi.org/10.1007/s13592-020-00755-4.

Maubecin, C. C., N. Rocamundi, N. Palombo, L. A. Aguirre, A. A. Cocucci, and A. N. Sérsic. 2021. Teasing out the functional groups of oil-collecting bees in the light of the pollination of Nierembergia flowers. Arthropod-Plant Interactions 15(5):809-819. https://doi.org/10.1007/s11829-021-09864-y.

Michener, C. D. 2007. The bees of the world. Johns Hopkins University Press, Baltimore.

Moeller, D. A. 2005. Pollinator community structure and sources of spatial variation in plant-pollinator interactions in Clarkia xantiana ssp. xantiana. Oecologia 142(1):28-37. https://doi.org/10.1007/s00442-004-1693-1.

Nattero, J., A. A. Cocucci, and R. Medel. 2010. Pollinator-mediated selection in a specialized pollination system: matches and mismatches across populations. Journal of Evolutionary Biology 23:1957-1968. https://doi.org/10.1111/j.1420-9101.2010.02060.x.

Nattero, J., R. Malerba, R. Medel, and A. Cocucci. 2011. Factors affecting pollinator movement and plant fitness in a specialized pollination system. Plant Systematics and Evolution 296(1):77-85. https://doi.org/10.1007/s00606-011-0477-4.

Neff, J. L., and B. B. Simpson. 2005. Rewards in flowers. other rewards: oils, resins, and gums. Pp. 314-328 en A. Dafni, P. G. Kevan and B. C. Husband (eds.). Practical pollination biology. Enviroquest, Cambridge, UK.

Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’hara, et al. 2020. Package ‘vegan.’ Community Ecology. R package version 2.5-7. URL: CRAN.R-project.org/package=vegan.

Ordano, M., J. Fornoni, K. Boege, and C. A. Domínguez. 2008. The adaptive value of phenotypic floral integration. New Phytologist 179(4):1183-1192. https://doi.org/10.1111/j.1469-8137.2008.02523.x.

Paradis, E., J. Claude, and K. Strimmer. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289-290. https://doi.org/10.1093/bioinformatics/btg412.

Phillips, R. D., B. Bohman, J. M. Anthony, S. L. Krauss, K. W. Dixon, and R. Peakall. 2015. Mismatch in the distribution of floral ecotypes and pollinators: insights into the evolution of sexually deceptive orchids. Journal of Evolutionary Biology 28(3):601-612. https://doi.org/10.1111/jeb.12593.

Poblete Palacios, J. A., F. Soteras, and A. A. Cocucci. 2019. Mechanical fit between flower and pollinators in relation to realized precision and accuracy in the hummingbird-pollinated Dolichandra cynanchoides. Biological Journal of the Linnean Society 126(4):655-665. https://doi.org/10.1093/biolinnean/bly219.

R Core Team. 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: R-project.org.

Rasmussen, C., and J. M. Olesen. 2000. Oil flowers and oil-collecting bees. Det Norske Videnskaps-Akademi. I. Matematisk Naturvidenskapelige Klasse Skrifter 39:23-31.

Reginato, M., and F. A. Michelangeli. 2016. Untangling the phylogeny of Leandra s. str. (Melastomataceae, Miconieae). Molecular phylogenetics and evolution 96:17-32. https://doi.org/10.1016/j.ympev.2015.11.015.

Renner, S. S., and H. Schaefer. 2010. The evolution and loss of oil-offering flowers: new insights from dated phylogenies for angiosperms and bees. Philosophical Transactions of the Royal Society B 365:423-435. https://doi.org/10.1098/rstb.2009.0229.

Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in ecology and evolution 3:217-223. https://doi.org/10.1111/j.2041-210X.2011.00169.x.

Roig Alsina, A. 1999. Revisión de las abejas colectoras de aceites del género Chalepogenus Holmberg (Hymenoptera, Apidae, Tapinotaspidini). Revista del Museo Argentino de Ciencias Naturales 1:67-101. https://doi.org/10.22179/REVMACN.1.143.

Roig Alsina, A. 2000. Claves para las especies argentinas de Centris (Hymenoptera, Apidae), con descripción de nuevas especies y notas sobre distribución. Revista del Museo Argentino de Ciencias Naturales 2:171-193. https://doi.org/10.22179/REVMACN.2.154.

Rosas‐Guerrero, V., R. Aguilar, S. Martén‐Rodríguez, L. Ashworth, M. Lopezaraiza‐Mikel, J. M. Bastida, and M. Quesada. 2014. A quantitative review of pollination syndromes: do floral traits predict effective pollinators? Ecology Letters 17(3):388-400. https://doi.org/10.1111/ele.12224.

Schlindwein, C. 1998. Frequent oligolecty characterizing a diverse bee-plant community in a xerophytic bushland of Subtropical Brazil. Studies in Neotropical Fauna and Environment 33:46-59. https://doi.org/10.1076/snfe.33.1.46.2168.

Sérsic, A. N. 2004. Pollination biology in the genus Calceolaria. Stapfia 82:1-121.

Simpson, B. B., and Neff, J. L. 1981. Floral rewards: alternatives to pollen and nectar. Annals of the Missouri Botanical Garden 68:301-322. https://doi.org/10.2307/2398800.

Smith, S. D. 2010. Using phylogenetics to detect pollinator‐mediated floral evolution. New Phytologist 188(2):354-363. https://doi.org/10.1111/j.1469-8137.2010.03292.x.

Smith, S. D., and R. Kriebel. 2018. Convergent evolution of floral shape tied to pollinator shifts in Iochrominae (Solanaceae). Evolution 72(3):688-697. https://doi.org/10.1111/evo.13416.

Smouse, P. E., J. C. Long, and R. R. Sokal. 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology 35:627-632. https://doi.org/10.2307/2413122.

Sosa-Pivatto, M., G. A. Camps, M. C. Baranzelli, A. Espíndola, A. N. Sérsic, and A. Cosacov. 2020. Connection, isolation and reconnection: Quaternary climatic oscillations and the Andes shaped the phylogeographical patterns of the Patagonian bee Centris cineraria (Apidae). Biological Journal of the Linnean Society 131(2):396-416. https://doi.org/10.1093/biolinnean/blaa116.

Spalink, D., B. T. Drew, M. C. Pace, J. G. Zaborsky, P. Li, K. M. Cameron, T. J. Givnish, and K. J. Sytsma. 2016. Evolution of geographical place and niche space: Patterns of diversification in the North American sedge (Cyperaceae) flora. Molecular Phylogenetics and Evolution 95:183-195. https://doi.org/10.1016/j.ympev.2015.09.028.

Stebbins, G. L. 1970. Adaptive radiation of reproductive characteristics in angiosperms. 1. Pollination mechanisms. Annual Review of Ecology and Systematics 1:307-326. https://doi.org/10.1146/annurev.es.01.110170.001515.

Tate, J. A., M. C. Acosta, J. McDill, E. A. Moscone, B. B. Simpson, and A. A. Cocucci. 2009. Phylogeny and character evolution in Nierembergia (Solanaceae): Molecular, morphological, and cytogenetic evidence. Systematic Botany 34(1):198-206. https://doi.org/10.1600/036364409787602249.

Torretta, J. P., A. S. Aliscioni, A. González-Arzac, and A. A. Avalos. 2017. Is the variation of floral elaiophore size in two species of Stigmaphyllon (Malpighiaceae) dependent on interaction with pollinators? Plant Ecology and Diversity 10(5-6):403-418. https://doi.org/10.1080/17550874.2018.1434567.

van der Niet, T., R. Peakall, and S. D. Johnson. 2014. Pollinator-driven ecological speciation in plants: new evidence and future perspectives. Annals of Botany 113:199-211. https://doi.org/10.1093/aob/mct290.

Villalobos, F., T. F. Rangel, and J. A. F. Diniz-Filho. 2013. Phylogenetic fields of species: cross-species patterns of phylogenetic structure and geographical coexistence. Proceedings of the Royal Society B: Biological Sciences 280(1756):20122570. https://doi.org/10.1098/rspb.2012.2570.

Vogel, S. 1971. Ölproduzierende Blumen, die durch ölsammelnde Bienen bestäubt werden. Naturwissenschaften 58:58. https://doi.org/10.1007/BF00620817.

Vogel, S. 1974. Ölblumen und Ölsammelnde Bienen. Akad Wiss u Lit Abh Math Naturwiss Kl 7:285-547.

Variación interespecífica de ensambles de polinizadores en Nierembergia (Solanaceae) en relación con la localización geográfica y la variación fenotípica de las flores

Published

2022-10-07

How to Cite

Maubecin, C. C., Augusto, M. N., & Sérsic, A. N. (2022). Interspecific variation of pollinator assemblages in Nierembergia (Solanaceae) in relation to geographic location and phenotypic variation of flowers. Ecología Austral, 32(3), 930–944. https://doi.org/10.25260/EA.22.32.3.0.1977