Potential distribution of Polylepis incana in the Ecuadorian Andes for physiology and hybridization studies and forest rehabilitation plans
DOI:
https://doi.org/10.25260/EA.23.33.1.0.1991Keywords:
ecological niche, Ecuadorian Andes, conservation, biodiversity, potential distribution, climate changeAbstract
Land use change and global warming pose significant threats to biodiversity and affect species distribution throughout the planet. Both factors operate at different scales, so even spatial features that allow to evaluate these factors properly are relevant to the early identification of extinction risks, especially in highland ecosystems. This study aims to model the ecological niche of Polylepis incana Kunth and its future distribution areas based on bioclimatic variables in the Ecuadorian Andes, as to promote conservation strategies. By analyzing high-resolution climate data employing MaxEnt and QGIS software, the appropriate habitat for P. incana was modeled, and the main climatic variables that best predict its potential distribution were identified. In addition, by employing herbal data we evaluated the status of the species in the predicted habitats and related them to species distribution models. The results show that the suitable habitat for P. incana is ~11393 km2 along the Ecuadorian Andes; out of the total area, 84009.90 ha correspond to the optimal site’s category. The two most influential variables contributed 91.70% to the model. Also, 5.53% of the total area —distributed among 9 protected areas in the Eastern and Western mountain range— was optimal to host this species. Furthermore, it is determined that, for the normal development of the species in relation to bioclimatic variables, the threshold ranges from 4.2 to 10.40 °C and from 138 to 332 mm of precipitation, with high nitrogen re-translocation values in the soil. This study provides valuable information that will undoubtedly help Ecuadorian local populations, authorities and researchers to generate highland-ecosystem conservation actions as a climate change combat mechanism.
References
Abba, M., M. F. Tognelli, P. Viviana, J. Benjam, and S. F. Vizca. 2012. Distribution of extant xenarthrans (Mammalia : Xenarthra) in Argentina using species distribution models. Mammalia 76:123-136. https://doi.org/10.1515/mammalia-2011-0089.
Andrade, L., and R. Moreano. 2013. Sistema de Información para la Interpolación de datos de Temperatura y de Precipitación. Revista politecnica 32:70-75. URL: tinyurl.com/5kpttbwh.
Barros, J., and A. Troncoso. 2010. Atlas climatológico del Ecuador. URL: tinyurl.com/2pnbxadt.
Beltrán, K., S. Salgado, F. Cuesta, S. León-Yánez, K. Romoleroux, E. Ortiz, A. Cárdenas, and A. Velástegui. 2009. Distribución espacial, sistemas ecológicos y caracterización florística de los páramos en el Ecuador. Quito: EcoCiencia, Proyecto Páramo Andino y Herbario QCA.
Cahill, J. R. A., and E. Matthysen. 2007. Habitat use by two specialist birds in high-Andean Polylepis forests. Science Direct 140(1-2):62-69. https://doi.org/10.1016/j.biocon.2007.07.022.
Cierjacks, A., K. Wesche, and I. Hensen. 2007. Potential lateral expansion of Polylepis forest fragments in central Ecuador. Forest Ecology and Management 242:477-486. https://doi.org/10.1016/j.foreco.2007.01.082.
Constitución de la Republica del Ecuador. 2008. URL: tinyurl.com/48aha5u9.
Cuyckens, G. A., and D. Renison. 2018. Ecology and conservation of Polylepis montane forests. An introduction to the special issue. Ecología Austral 28:157-162. https://doi.org/10.25260/EA.18.28.1.1.766.
Domic, A., A. Palabral Aguilera, M. Gómez, R. Hurtado U, N. Ortuño, and M. Liberman. 2017. Polylepis incarum (Rosaceae) una especie En Peligro Crítico en Bolivia: Propuesta de reclasificación en base al área de ocupación y estructura poblacional. Ecología en Bolivia 52:116-131. URL: tinyurl.com/ms8twrjc.
Ellenberg, H. 1958. Wald oder Steppe? Die naturliche Pflanzendecke der Anden Perus. Umschau 21:645-681. https://doi.org/10.25260/EA.18.28.1.1.493.
Fajardo-Gutiérrez, F., J. Infante-Betancour, and D. M. Cabrera-Amaya. 2018. Modelización de la distribución potencial del género Polylepis en Colombia y consideraciones para su conservación. Ecología Austral 28:202-215. https://doi.org/10.25260/EA.18.28.1.1.585.
Fehse, J., R. Hofstede, N. Aguirre, C. Paladines, A. Kooijman, and J. Sevink. 2002. High altitude tropical secondary forests: a competitive carbon sink? Forest Ecology and Management 163:9-25. https://doi.org/10.1016/S0378-1127(01)00535-7.
Fick, S. E., and R. J. Hijmans. 2017. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37:4302-4315. https://doi.org/10.1002/joc.5086.
Giorgis, M. A., A. M. Cingolani, I. Teich, and M. Poca. 2020. Forest Ecology and Management Can livestock coexist with Polylepis australis forests in mountains of central Argentina? Setting thresholds for a land sharing landscape. Forest Ecology and Management 457:117728-117728. https://doi.org/10.1016/j.foreco.2019.117728.
Global Biodiversity Information Facility. 2020. Free and open access to biodiversity data. Pages 1-1.
Gradstein, S. R., and S. León-Yánez. 2020. Liverwort diversity in Polylepis pauta forests of Ecuador under different climatic conditions. Neotropical Biodiversity 6:138-146. https://doi.org10.1080/23766808.2020.1809273.
Hughes, R. A., and L. F. Pilatasig. 2002. Cretaceous and Tertiary terrane accretion in the Cordillera Occidental of the Andes of Ecuador. Tectonophysics 345:29-48. https://doi.org/10.1016/S0040-1951(01)00205-0.
Instituto Nacional de Meteorología e Hidrología (INAMHI). 2019. Boletín Meteorológico 534 Agosto 2019. Quito.
Jameson, J. S., and P. M. Ramsay. 2007. Changes in high-altitude Polylepis forest cover and quality in the Cordillera de Vilcanota, Perú, 1956-2005. Biological Conservation 138:38-46. https://doi.org/10.1016/j.biocon.2007.04.008.
Keith, D. A., J. P. Rodríguez, K. M. Rodríguez-Clark, E. Nicholson, K. Aapala, A. Alonso, M. Asmussen, S. Bachman, A. Basset, and E. G. Barrow. 2013. Scientific foundations for an IUCN Red List of Ecosystems. PloS ONE 8:e62111. https://doi.org/10.1371/journal.pone.0062111.
Kessler, M. 1995. The genus Polylepis (Rosaceae) in Bolivia. Candollea 50:131-171.
Kessler, M., S. K. Herzog, J. Fjeldså, and K. Bach. 2001. Species richness and endemism of plant and bird communities along two gradients of elevation, humidity and land use in the Bolivian Andes. Diversity and Distributions 7:61-77. https://doi.org/10.1046/j.1472-4642.2001.00097.x.
Kessler, M., and J. Kluge. 2008. Diversity and endemism in tropical montane forests - From patterns to processes. Tropical Mountain Forest: Patterns and Processes in a Biodiversity Hotspot 2:35-50.
Kessler, M., and A. Schmidt-Lebuhn. 2006. Taxonomia y distribucion de Polylepis. Organisms Diversity and Evolution 6:1-10. https://doi.org/10.1016/j.ode.2005.04.001.
Körner, C., W. Jetz, J. Paulsen, D. Payne, K. Rudmann-Maurer, and E. M. Spehn. 2017. A global inventory of mountains for bio-geographical applications. Alpine Botany 127:1-15. https://doi.org/10.1007/s00035-016-0182-6.
Luteyn, J. 2000. Review of : Luteyn, J. 1999. Páramos: A Checklist of Plant Diversity, Geographical Distribution, and Botanical Literature (Memoirs of the New York Botanical Garden, Vol. 84). The New York Botanical Garden Press, New York. Plant Systematics and Evolution 220(May):269-71.
Mateo, R., A. Felicisimo, and J. Muñoz. 2011. Species distributions models: A synthetic revision. Revista Chilena de Historia Natural 84:217-240. https://doi.org/10.4067/S0716-078X2011000200008.
Mendoza, W. 2005. Especie nueva de Polylepis (Rosaceae) de la cordillera Vilcabamba (Cusco, Perú). Revista Peruana de Biología 12:103-106. https://doi.org/10.15381/rpb.v12i1.2364.
Perazzo, A., and J. M. Rodríguez. 2019. Impacto del fuego sobre la vegetación no vascular del suelo: un caso de estudio en los bosques de Polylepis australis (Rosaceae) del centro de Argentina. Lilloa 56:67-80. https://doi.org/10.30550/j.lil/2019.56.2/6.
Phillips, S., V. Aneja, D. Kang, and S. Arya. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 6:231-252. https://doi.org/10.1016/j.ecolmodel.2005.03.026.
Phillips, S. J., and M. Dudik. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x.
Purcell, J., and A. Brelsford. 2004. Reassessing the causes of decline of Polylepis, a tropical subalpine forest. Ecotropica 10:155-158.
Quispe, B., and R. Révolo. 2020. Temperatura superficial y estado de la vegetación del bosque de Polylepis spp., distrito de San Marcos de Rocchac, Huancavelica - Perú. Enfoque UTE 11:69-86. https://doi.org/10.29019/enfoqueute.v11n3.592.
Rangel, O., and H. Arellano. 2010. Bosques de Polylepis: un tipo de vegetación condenado a la extinción. Colombia Diversidad Biótica 1:443-478.
Renison, D., A. M. Cingolani, and R. Suarez. 2002. Efectos del fuego sobre un bosquecillo de Polylepis australis (Rosaceae) en las montañas de Córdoba, Argentina. Revista Chilena de Historia Natural 75:719-727. https://doi.org/10.25260/EA.18.28.1.1.522.
Renison, D., L. Morales, G. Cuyckens, C. Sevillano, and D. Cabrera. 2018. Ecología y conservación de los bosques y arbustales de Polylepis: ¿qué sabemos y qué ignoramos? Ecología Austral 28:163-174. https://doi.org/10.25260/EA.18.28.1.1.766.
Riofrío, J., C. Herrero, J. Grijalva, and F. Bravo. 2015. Aboveground tree additive biomass models in Ecuadorian highland agroforestry systems. Biomass and Bioenergy 80:252-259. https://doi.org/10.1016/j.biombioe.2015.05.026.
Salzmann, N., C. Huggel, S. Nussbaumer, and G. Ziervogel. 2016. Climate Change Adaptation downstream An Upstream- Strategies - Perspective. https://doi.org/10.1007/978-3-319-40773-9.
Schmidt-Lebuhn, A. N., M. Kessler, and M. Kumar. 2006. Promiscuity in the Andes: Species relationships in Polylepis (Rosaceae, Sanguisorbeae) based on AFLP and morphology. Systematic Botany 31:547-559. https://doi.org/10.1600/036364406778388629.
Scrivanti, L. R., and A. M. Anton. 2020. Spatial distribution of Poa scaberula (poaceae) along the andes. Heliyon 6:1-6. https://doi.org/10.1016/j.heliyon.2020.e05220.
Thuiller, W., D. M. Richardson, P. Pyšek, G. F. Midgley, G. O. Hughes, and M. Rouget. 2005. Niche‐based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology 11:2234-2250. https://doi.org/10.1111/j.1365-2486.2005.001018.x.
Tropicos.org. Missouri Botanical Garden. 2020. Tropicos. Saint Louis, Missouri.
Vargas, O. 2013. Disturbios en los páramos andinos. Pp. 39-57 en J. Cortés and C. Sarmiento (eds.). Visión socioecosistémica de los páramos y la alta montaña colombiana. Ed. 1. Instituto von Humboldt (Publ.).
Vistin, D., and H. Barrero. 2017. Floristic study of the green forest always montano of the community of Guangras, Ecuador. Avances 19:218-226.
Vistin, D. A., E. A. Muñoz, and G. M. Ati. 2020. Monitoreo del Herbazal del páramo una estrategia de medición del cambio climático en la Reserva de Producción de Fauna Chimborazo. Ciencia Digital 4:32-47. https://doi.org/10.33262/cienciadigital.v4i2.1195.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Daniel A. Vistín, Edison M. Salas, Jaqueline E. Balseca, Norma X. Lara
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors retain their rights as follows: 1) by granting the journal the right to its first publication, and 2) by registering the published article with a Creative Commons Attribution License (CC-BY 4.0), which allows authors and third parties to view and use it as long as they clearly mention its origin (citation or reference, including authorship and first publication in this journal). Authors can make other non-exclusive distribution agreements as long as they clearly indicate their origin and are encouraged to widely share and disseminate the published version of their work.