Southern coastal system of the San Jorge Gulf during spring

Authors

  • Regina Pierattini Martínez Centro para el Estudio de Sistemas Marinos, CESIMAR-CONICET. Instituto Patagónico del Mar, IPaM-UNPSJB
  • Juan P. Pisoni Centro para el Estudio de Sistemas Marinos, CESIMAR-CONICET. Instituto Patagónico del Mar, IPaM-UNPSJB
  • Flavio E. Paparazzo Centro para el Estudio de Sistemas Marinos, CESIMAR-CONICET. Instituto Patagónico del Mar, IPaM-UNPSJB

DOI:

https://doi.org/10.25260/EA.23.33.2.0.1994

Keywords:

fronts, macronutrients, biological production, upwelling, San Jorge Gulf

Abstract

The San Jorge Gulf was declared an area of national economic, commercial, conservation and diversity interest. To contribute to its study, the southern coastal sector of the gulf was characterised in physical and chemical parameters in spring campaigns (November 2016 and 2017). Samples were taken on board the oceanographic vessel Puerto Deseado in three perpendicular to the coast transects and another one to the southeast of the gulf, which crosses a thermohaline front. The perpendicular to the coast transects showed a similar pattern of distribution of physical and chemical properties in the water column. At nearshore stations, the water column was homogeneous and the nutrient concentrations between the surface and bottom layers were similar. At offshore stations, the water column was stratified and the nutrient concentrations were higher near the bottom than at surface. In 2016, a wind induced upwelling front was observed in the southwest of the gulf. Both sides of the thermohaline front did not show significant chemical differences. Throughout the study area, silicic acid and nitrate limited primary production. Satellite chlorophyll-a data and fluorescence profiles showed that the southern sector of the gulf has a high biomass of phytoplankton during November. We conclude that the southern sector of the SJG has different features depending on the external forcing caused by the front. The presence of fronts stimulates the growth of phytoplankton biomass through the injection of nutrients from the homogeneous part to the stratified sector. This would affect phytoplankton community and, thus, the productivity of the system.

References

Acha, E. M., A. Piola, O. Iribarne, and H. Mianzan. 2015. Ecological processes on marine fronts: oases in the ocean. 1ra Edición. Springer. Mar del Plata, Buenos Aires, Argentina. https://doi.org/10.1007/978-3-319-15479-4.

Akselman, R. 1996. Estudios ecológicos en el Golfo San Jorge y adyacencias (Atlántico Sudoccidental). Distribución, abundancia y variación estacional del fitoplancton en relación a factores físico-químicos y la dinámica hidrológica. Universidad de Buenos Aires.

Allega, L., J. P. Pisoni, E. Cozzolino, R. A. Maenza, and M. C. Piccolo. 2021. The variability of sea surface temperature in the Patagonian Shelf Argentina, from 35 years of satellite information. International Journal of Remote Sensing 42(16):6090-6106. https://doi.org/10.1080/01431161.2021.1934600.

Belkin, I. M., and J. E. O'Reilly. 2009. An algorithm for oceanic front detection in chlorophyll and SST satellite imagery. Journal of Marine Systems 78(3):319-326. https://doi.org/10.1016/j.jmarsys.2008.11.018.

Bianchi, A. A., L. Bianucci, A. R. Piola, D. R. Pino, I. Schloss, A. Poisson, and C. F. Balestrini. 2005. Vertical stratification and air-sea CO2 fluxes in the Patagonian shelf. Journal of Geophysical Research: Oceans 110(C7). https://doi.org/10.1029/2004JC00248.

Bianchi, A. A., D. R. Pino, H. G. I. Perlender, A. P. Osiroff, V. Segura, V. Lutz, and A. R. Piola. 2009. Annual balance and seasonal variability of sea‐air CO2 fluxes in the Patagonia Sea: Their relationship with fronts and chlorophyll distribution. Journal of Geophysical Research: Oceans 114(C3). https://doi.org/10.1029/2008JC004854.

Bodnariuk, N., C. G. Simionato, and M. Saraceno. 2021. SAM-driven variability of the southwestern Atlantic shelf sea circulation. Continental Shelf Research 212:104313. https://doi.org/10.1016/j.csr.2020.104313.

Brzezinski, M. A. 1985. The Si: C: N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. Journal of Phycology 21(3):347-357. https://doi.org/10.1111/j.0022-3646.1985.00347.x.

Carbajal, J. C., A. L. Rivas, and C. Chavanne. 2018. High-frequency frontal displacements south of San Jorge Gulf during a tidal cycle near spring and neap phases: Biological implications between tidal states. Oceanography 31(4):60-69. https://doi.org/10.5670/oceanog.2018.411.

Chen, C. Y., and E. G. Durbin. 1994. Effects of pH on the growth and carbon uptake of marine phytoplankton. Marine Ecology-Progress Series 109:83-94. https://doi.org/10.3354/meps109083.

Costanza, R., R. d'Arge, R. De Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O’Neill, J. Paruelo R. G. Raskin, P. Sutton, and M. van den Belt. 1997. The value of the world's ecosystem services and natural capital. Nature 387:253-260. https://doi.org/10.1038/387253a0.

Dogliotti, A. I., I. R. Schloss, G. O. Almandoz, and D. A. Gagliardini. 2009. Evaluation of SeaWiFS and MODIS chlorophyll‐a products in the Argentinean Patagonian Continental Shelf (38° S-55° S). International Journal of Remote Sensing 30(1):251-273. https://doi.org/10.1080/01431160802311133.

Fernández, M., J. I. Carreto, J. Mora, and A. Roux. 2005. Physico-chemical characterization of the benthic environment of the Golfo San Jorge, Argentina. Journal of the Marine Biological Association of the United Kingdom 85:1317-1328. https://doi.org/10.1017/S002531540501249X.

Fernández, M., D. Cucchi-Colleoni, A. Roux, Á. Marcos, and E. Fernández. 2007. Caracterización físico-química del sistema bentónico en el sector sur del Golfo San Jorge, Argentina. Revista de Biología Marina y Oceanografía 42(2):177--192. https://doi.org/10.4067/S0718-19572007000200005.

Flores-Melo, X., I. R. Schloss, C. Chavanne, G. O. Almandoz, M. Latorre, and G. A. Ferreyra. 2018. Phytoplankton ecology during a spring-neap tidal cycle in the southern tidal front of San Jorge Gulf, Patagonia. Oceanography 31(4):104-112. https://doi.org/10.5670/oceanog.2018.412.

Glembocki, N. G., G. N. Williams, M. E. Góngora, D. A. Gagliardini, and J. M. Orensanz. 2015. Synoptic oceanography of San Jorge Gulf (Argentina): A template for Patagonian red shrimp (Pleoticus muelleri) spatial dynamics. Journal of Sea Research 95:22-35. https://doi.org/10.1016/j.seares.2014.10.011.

Góngora, M. E., D. González-Zevallos, A. Pettovello, and L. Mendía. 2012. Caracterización de las principales pesquerías del golfo San Jorge Patagonia, Argentina. Latin American Journal of Aquatic Research 40(1):1-11. https://doi.org/10.3856/vol40-issue1-fulltext-1.

Guerrero, R. A., and A. R. Piola. 1997. Masas de agua en la plataforma continental. El Mar Argentino y sus Recursos Pesqueros 1:107-118. http://hdl.handle.net/1834/1703.

Laurs, R. M., P. C. Fiedler, and D. R. Montgomery. 1984. Albacore tuna catch distributions

relative to environmental features observed from satellite. Deep-Sea Research 31:1085-1099. https://doi.org/10.1016/0198-0149(84)90014-1.

Matano, R. P., and E. D. Palma. 2018. Seasonal variability of the oceanic circulation in the Gulf of San Jorge, Argentina. Oceanography 31(4):16-24. https://doi.org/10.5670/oceanog.2018.402.

Millero, F. J. 2005. Chemical oceanography. 3rd edition. Pp. 536. Boca Raton, CRC Press. https://doi.org/10.1201/9780429258718.

NASA. 2018. Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data. NASA OB DAAC, Greenbelt, MD, USA.

Olson, D. B. 2002. Biophysical dynamics of ocean fronts. Pp. 187-218 in A. R. Robinson, J. J. McCarthy and B. Rothschild (eds.). Biological–Physical Interactions in the Sea. The Sea 12.

Paparazzo, F. E. 2003. Evaluación de nutrientes inorgánicos en aguas oceánicas y su relación con la biomasa fitoplanctónica. Tesis de licenciatura en Ciencias Biológicas. Universidad Nacional de la Patagonia San Juan Bosco Facultad de Ciencias Naturales Sede Puerto Madryn.

Paparazzo, F. E., R. Pierattini-Martínez, E. Fabro, R. J. Gonçalves, A. C. Crespi-Abril, G. R. Soria, E. S. Barbieri, and G. O. Almandoz. 2021. Relevance of sporadic upwelling events on primary productivity: The key role of nitrogen in a gulf of SW Atlantic Ocean. Estuarine, Coastal and Shelf Science 249:107123. https://doi.org/10.1016/j.ecss.2020.107123.

Pisoni, J. P., A. L. Rivas, and M. H. Tonini. 2020. Coastal upwelling in the San Jorge Gulf (Southwestern Atlantic) from remote sensing, modelling and hydrographic data. Estuarine, Coastal and Shelf Science 245:106919. https://doi.org/10.1016/j.ecss.2020.106919.

Redfield, A. C. 1934. On the proportions of derivatives in sea water and their relation to the composition of plankton. Pp. 176-192 in R. J. Daniel (ed.). James Johnstone Memorial Volume I. Liverpool: University of Liverpool. UK.

Rivas, A. L., and J. P. Pisoni. 2010. Identification, characteristics and seasonal evolution of surface thermal fronts in the Argentinean Continental Shelf. Journal of Marine Systems 79(1-2):134-143. https://doi.org/10.1016/j.jmarsys.2009.07.008.

Romero, S. I., A. R. Piola, M. Charo, and C. A. Eiras Garcia. 2006. Chlorophyll-a variability off Patagonia based on SeaWiFS data. Journal of Geophysical Research: Oceans 111:1-11. https://doi.org/10.1029/2005JC003244.

Skalar Analytical® V. B. 2005a. Skalar Methods - Analysis: Nitrate + Nitrite - Catnr. 461-031 + DIAMOND Issue 081505/MH/99235956. Breda (The Netherlands).

Skalar Analytical® V. B. 2005b. Skalar Methods - Analysis: Phosphate - Catnr. 503-010w/r + DIAMOND Issue 081505/MH/99235956. Breda (The Netherlands).

Skalar Analytical® V. B. 2005c. Skalar Methods - Analysis: Silicate - Catnr. 563-051 + DIAMOND Issue 081505/MH/99235956. Breda (The Netherlands).

Svendsen, G. M., M. O. Reinaldo, M. A. Romero, G. Williams, A. Magurran, S. Luque, and R. A. González. 2020. Drivers of diversity gradients of a highly mobile marine assemblage in a mesoscale seascape. MEPS 638:149-164. https://doi.org/10.3354/meps13264.

Sommer, U. 1989. The Role of Competition for Resources in Phytoplankton Succession. Pp. 57-106 in U. Sommer (ed.). Plankton Ecology. Brock/Springer Series in Contemporary Bioscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74890-5_3.

Tonini, M., E. D. Palma, and A. L. Rivas. 2006. Modelo de alta resolución de los golfos patagónicos. Mecánica Computacional 25:1441-1460.

Torres, A., F. E. Paparazzo, G. N. Williams, A. L. Rivas, M. Solis, and J. L. Esteves. 2018. Dynamics of Macronutrients in the San Jorge Gulf during spring and summer. Oceanography 31:25-32. https://doi.org/10.5670/oceanog.2018.407.

Tréguer, P. J., and G. Jacques. 1992. Dynamics of nutrients and phytoplankton, and fluxes of carbon, nitrogen and silicon in the Antarctic Ocean. Polar Biology 12:149-162. https://doi.org/10.1007/BF00238255.

Williams, G. N., A. I. Dogliotti, P. Zaidman, M. Solis, M. A. Narvarte, R. C. Gonzalez, J. L. Esteves, and D. A. Gagliardini. 2013. Assessment of remotely-sensed sea-surface temperature and chlorophyll-a concentration in San Matías Gulf (Patagonia, Argentina). Continental Shelf Research 52:159-171. https://doi.org/10.1016/j.csr.2012.08.014.

Williams, G., M. Sapoznik, M. Ocampo-Reinaldo, M. Solis, M. Narvarte, R., González, and D. Gagliardini. 2010. Comparison of AVHRR and SeaWiFS imagery with fishing activity and in situ data in San Matías Gulf, Argentina. International Journal of Remote Sensing 31(17-18):4531-4542. https://doi.org/10.1080/01431161.2010.485218.

Yañez, E., V. Catasti, M. A. Barbieri, and G. Böhm. 1996. Relaciones entre la distribución de recursos pelágicos pequeños y la temperatura superficial de la mar registrada con satélites NOAA en la zona central de Chile. Investigaciones Marinas. Valparaíso 24:107-122. https://doi.org/10.4067/S0717-71781996002400009.

Southern coastal system of the San Jorge Gulf during spring

Downloads

Published

2023-04-18

How to Cite

Pierattini Martínez, R., Pisoni, J. P., & Paparazzo, F. E. (2023). Southern coastal system of the San Jorge Gulf during spring. Ecología Austral, 33(2), 325–336. https://doi.org/10.25260/EA.23.33.2.0.1994