Limnological, phytoplankton and bathymetry characteristics of a coloured lake (Laguna Negra, National Park Tierra del Fuego, Argentina)

Authors

  • Patricia Rodríguez Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Austral de Investigaciones Científicas (CADIC). Tierra del Fuego, Argentina. Universidad Nacional de Tierra del Fuego, Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA). Tierra del Fuego, Argentina
  • Gabriela González Garraza Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Austral de Investigaciones Científicas (CADIC). Tierra del Fuego, Argentina. Universidad Nacional de Tierra del Fuego, Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA). Tierra del Fuego, Argentina
  • Ramiro López Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Austral de Investigaciones Científicas (CADIC). Tierra del Fuego, Argentina
  • Andrea Coronato Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Austral de Investigaciones Científicas (CADIC). Tierra del Fuego, Argentina. Universidad Nacional de Tierra del Fuego, Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA). Tierra del Fuego, Argentina
  • Gabriela Mataloni Instituto de Investigación e Ingeniería Ambiental (IIIA, CONICET), Universidad Nacional de Gral. San Martín. Gral. San Martín, Buenos Aires, Argentina
  • María Granitto Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Austral de Investigaciones Científicas (CADIC). Tierra del Fuego, Argentina
  • Andrea Malits Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Austral de Investigaciones Científicas (CADIC). Tierra del Fuego, Argentina
  • Florencia Veira

DOI:

https://doi.org/10.25260/EA.23.33.1.0.2014

Keywords:

lake, phytoplankton, peatland, Tierra del Fuego National Park

Abstract

The 4% of the Argentinian sector from Tierra del Fuego is covered with water. Colored lakes are among the most conspicuous water bodies in the Andean area, and Laguna Negra, in the National Park Tierra del Fuego, is one of them. The main physical and chemical variables were monitored and phytoplankton samples were obtained with a monthly frequency during the ice-free period, between September 2016 and March 2018 (n=15). Laguna Negra was deeper than expected, with a maximum depth of 15.5 m. In addition, this lake has high pH values (7.5±0.55), which were quite stable during the study (variation coefficient, VC=8.3%). These characteristics preclude us from considering this lake as a shallow peatland lake. Dissolved and total nutrients were low and did not show a temporal pattern of fluctuation during the study period. The same trend of no clear fluctuation was also shared by dissolved organic carbon concentration (DOC=7.7±0.78 mg/L). Taxa richness ranged between 6 and 13 throughout the study. The biovolume was inversely correlated with the vertical attenuation coefficient of light (Kd). Phytoplankton biomass (chlorophyll-a concentration, abundance, and biovolume) was generally low, with Dinobryon divergens, Mallomonas sp. and Parvodinium cf. inconspicuum being the dominant taxa. Depending on the classification used, Laguna Negra might be regarded as a humic or dystrophic lake because its color is at the edge of values used in the current literature to consider a lake as humic.

Author Biography

Patricia Rodríguez, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Austral de Investigaciones Científicas (CADIC). Tierra del Fuego, Argentina. Universidad Nacional de Tierra del Fuego, Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA). Tierra del Fuego, Argentina

Investigadora Adjunta CONICET

Profesora Adjunta Universidad Nacional de Tierra del Fuego (Instituto de Ciencias Polares, Ambiente y Recursos Naturales)

References

APHA. 2017. Standard Methods for the Examination of Water and Wastewater. 23rd Edition. Washington D.C., USA. https://doi.org/10.1046/j.1365-2427.2000.00672.x.

Arvola, L., P. Eloranta, M. Järvinen, J. Keskitalo, and A. L. Holopainen. 1999. Phytoplankton. Pp. 137-171 en J. Keskitalo and P. Eloranta (eds.). Limnology of Humic Lakes. Backhuys Publishers, Leiden.

Bujalesky, G., S Aliotta, and F. Isla. 2004. Facies del subfondo del canal Beagle, Tierra del Fuego. Revista de la Asociación Geológica Argentina 59(1):29-37.

Carlson, R. E. 1977. A trophic state index for lakes. Limnology and Oceanography 22:361-369. https://doi.org/10.4319/lo.1977.22.2.0361.

Conzonno, V. H., and J. Ulibarrena. 2010. Hydrochemistry of Lakes of the Patagonian Province of Tierra del Fuego (Argentina). Environmental Earth Sciences 59(7):1431-1436. https://doi.org/10.1007/s12665-009-0129-y.

Coronato, A., E. Mazzoni, M. Vázquez, and F. Coronato. 2017. Patagonia. Una síntesis de su Geografía Física. Editorial UNPA. Río Gallegos.

Cuthbert, I. D., and P. Del Giorgio. 1992. Toward a standard method of measuring color in freshwater. Limnology and Oceanography 37(6):1319-1326. https://doi.org/10.4319/lo.1992.37.6.1319.

Deininger, A., C. L., Faithfull, J. Karlsson, M. Klaus, and A. K. Bergström. 2017. Pelagic food web response to whole lake N fertilization. Limnology and Oceanography 62(4):1498-1511. https://doi.org/10.1002/lno.10513.

Drzymulska, D., S. Kłosowski, P. Pawlikowski, P. Zieliński, and E. Jabłońska. 2013. The historical development of vegetation of foreshore mires beside humic lakes: different successional pathways under various environmental conditions. Hydrobiologia 703(1):15-31. https://doi.org/10.1007/s10750-012-1334-3.

Finstad, A. G., T. Andersen, S. Larsen, K. Tominaga, S. Blumentrath, H. A. De Wit, H. Tømmervik, and D. O. Hessen. 2016. From greening to browning: Catchment vegetation development and reduced S-deposition promote organic carbon load on decadal time scales in Nordic lakes. Scientific Reports 6(1):1-8. https://doi.org/10.1038/srep31944.

González Garraza, G., G. Mataloni, R. Iturraspe, R. Lombardo, S. Camargo, and M. V. Quiroga. 2012. The limnological character of bog pools in relation to meteorological and hydrological features. Mires and Peat 10:1-14.

Gordillo, S., A. Coronato, and J. Rabassa. 1993. Late Quaternary evolution of a subantarctic paleofjord, Tierra del Fuego. Quaternary Science Reviews 12(10):889-912. https://doi.org/10.1016/0277-3791(93)90027-J.

Górniak, A. 2017. A new version of the Hydrochemical Dystrophy Index to evaluate dystrophy in lakes. Ecological Indicators 78:566-573. https://doi.org/10.1016/j.ecolind.2017.03.030.

Graham, J. M., A. D. Kent, G. H Lauster, A. C. Yannarell, L. E. Graham, and E. W. Triplett. 2004. Seasonal dynamics of phytoplankton and planktonic protozoan communities in a northern temperate humic lake: diversity in a dinoflagellate dominated system. Microbial Ecology 48(4):528-540. https://doi.org/10.1007/s00248-004-0223-3.

Hillebrand, H., D. Claus-Dieter, D. Kirschtel, U. Pollingher, and T. Zohary. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35:403-424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x.

Holopainen, A. L., R. Niinioja, and A. Rämö. 2003. Seasonal succession, vertical distribution and long term variation of phytoplankton communities in two shallow forest lakes in eastern Finland. Hydrobiologia 506:237-245. https://doi.org/10.1023/B:HYDR.0000008555.92238.91.

Håkanson, L., and V. V. Boulion. 2001. Regularities in primary production, Secchi depth and fish yield and a new system to define trophic and humic state indices for lake ecosystems. International Review of Hydrobiology Biology 86:23-62. https://doi.org/10.1002/1522-2632(200101)86:1<23::AID-IROH23>3.0.CO;2-4.

Iturraspe, R., and A. Urcioulo. 2000. Clasificación y caracterización de las cuencas hídricas de Tierra del Fuego. XVIII Congreso Nacional del Agua-Termas de Rio Hondo, Santiago del Estero.

Jespersen, A. M., and K. Christoffersen. 1987. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie 109:445-454.

Jones, R. I. 1992. The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 229(1):73-91. https://doi.org/10.1007/BF00006992.

Jones, R. I. 2000. Mixotrophy in planktonic protists: an overview. Freshwater Biology 45(2):219-226. https://doi.org/10.1046/j.1365-2427.2000.00672.x.

Keskitalo, J., and P. Eloranta. 1999. Limnology of humic waters. Backhuys Publishers, Leiden.

Kirchman, D. L., X. A. G. Morán, and H. Ducklow. 2009. Microbial growth in the polar oceans - role of temperature and potential impact of climate change. Nature Reviews Microbiology 7(6):451-459. https://doi.org/10.1038/nrmicro2115.

Kirk, J. T. O. 2011. Light and photosynthesis in aquatic ecosystems. Second edition. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511623370.

Kortelainen, P. 1999. Source of aquatic carbon. Pp. 41-57 en J. Keskitalo and P. Eloranta (eds.). Limnology of Humic Lakes. Backhuys Publishers, Leiden.

Kritzberg, E. S., E. M. Hasselquist, M. Škerlep, S. Löfgren, O. Olsson, J. Stadmark, S. Valinia, L. A. Hansson, and H. Laudon. 2020. Browning of freshwaters: Consequences to ecosystem services, underlying drivers, and potential mitigation measures. Ambio 49(2):375-390. https://doi.org/10.1007/s13280-019-01227-5.

Lepš, J., and P. Šmilauer. 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511615146.

Lizarralde, M. S. 1993. Current status of the introduced beaver (Castor canadensis) population in Tierra del Fuego, Argentina. Ambio 22(6):351-358.

Lizarralde, M. S., G. A. Deferrari, S. E. Álvarez, and J. M. Escobar. 1996. Effects of beaver (Castor canadensis) on the nutrient dynamics of the Southern Beech forest of Tierra del Fuego (Argentina). Ecología Austral 6(2):101-105.

Mariazzi, A. A., V. H. Conzonno, J. Ulibarrena, J. C. Paggi, and J. L. Donadelli. 1987. Limnological investigation in Tierra del Fuego, Argentina. Biología Acuática 10:1-80.

Mataloni, G. 1999. Ecological studies on algal communities from Tierra del Fuego peat bogs. Hydrobiologia 391(1):157-170. https://doi.org/10.1023/A:1003593513413.

Mataloni, G., G. González Garraza, and A. Vinocur. 2015. Landscape-driven environmental variability largely determines abiotic characteristics and phytoplankton patterns in peat bog pools (Tierra del Fuego, Argentina). Hydrobiologia 751(1):105-125. https://doi.org/10.1007/s10750-015-2175-7.

Onorato, M. R., A. Coronato, L. P. Perucca, J. Rabassa, and R. López. 2017. Morpho-bathymetry and surficial morphology of Udaeta Lake, along the Magallanes-Fagnano fault system, Tierra del Fuego, Argentina. Journal of South American Earth Sciences 76:1-10. https://doi.org/10.1016/j.jsames.2017.02.001.

Padisák, J., and L. Naselli-Flores. 2021. Phytoplankton in extreme environments: importance and consequences of habitat permanency. Hydrobiologia 848(1):157-176. https://doi.org/10.1007/s10750-020-04353-4.

Peuravuori, J., and K. Pihlaja. 1997. Molecular size distribution and spectroscopic properties of aquatic humic substances. Analytica Chimica Acta 337(2):133-149. https://doi.org/10.1016/S0003-2670(96)00412-6.

Rabassa, J., C. Heusser, and R. Stuckenrath. 1986. New Data on Holocene Sea Transgression in the Beagle Channel: Tierra del Fuego, Argentina. Pp. 291-309 en J. Rabassa (ed.). Quaternary of South America and Antarctic Peninsula. CRC Press, London. https://doi.org/10.1201/9781003079316-15.

Saad, J. F., M. R. Schiaffino, A. Vinocur, I. O'Farrell, G. Tell, and I. Izaguirre. 2013. Microbial planktonic communities of freshwater environments from Tierra del Fuego: dominant trophic strategies in lakes with contrasting features. Journal of Plankton Research 35(6):1220-1233. https://doi.org/10.1093/plankt/fbt075.

Saad, J. F., F. Unrein, P. M. Tribelli, N. López, and I. Izaguirre. 2016. Influence of lake trophic conditions on the dominant mixotrophic algal assemblages. Journal of Plankton Research 38(4):818-829. https://doi.org/10.1093/plankt/fbw029.

San Martín, C. N., J. F. Ponce, and A. Coronato. 2021. Lakes and glaciers from Fuegian Andes. Morphology, distribution and origin. Pp. 173-188 en R. D. Acevedo (ed.). Geological resources of Tierra del Fuego. Springer Geology, Springer International Publishing. https://doi.org/10.1007/978-3-030-60683-1_10.

Seekell, D. A., J. F. Lapierre, J. Ask, A. K. Bergström, A. Deininger, P. Rodríguez, and J. Karlsson. 2015a. The influence of dissolved organic carbon on primary production in northern lakes. Limnology and Oceanography 60(4):1276-1285. https://doi.org/10.1002/lno.10096.

Seekell, D. A., J. F. Lapierre, and J. Karlsson. 2015b. Trade-offs between light and nutrient availability across gradients of dissolved organic carbon concentration in Swedish lakes: implications for patterns in primary production. Canadian Journal of Fisheries and Aquatic Sciences 72(11):1663-1671. https://doi.org/10.1139/cjfas-2015-0187.

Solomon, C. T., S. E. Jones, B. C. Weidel, I. Buffam, M. L. Fork, J. Karlsson, and J. E. Saros. 2015. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems 18(3):376-389. https://doi.org/10.1007/s10021-015-9848-y.

Sun, J., and D. Liu. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25:1331-1346. https://doi.org/10.1093/plankt/fbg096.

Tell, G., I. Izaguirre, and L. Allende. 2011. Diversity and geographic distribution of Chlorococcales (Chlorophyceae) in contrasting lakes along a latitudinal transect in Argentinean Patagonia. Biodiversity and conservation 20:703-727. https://doi.org/10.1007/s10531-010-9955-1.

Utermöhl, H. 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik: Mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. Internationale Vereinigung für theoretische und angewandte Limnologie: Mitteilungen 9:1-38. https://doi.org/10.1080/05384680.1958.11904091.

Valderrama, J. C. 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry 10(2):109-122. https://doi.org/10.1016/0304-4203(81)90027-X.

Villarreal, M. L., and A. Coronato. 2017. Characteristics and nature of pans in the semiarid temperate-cold steppe of Tierra del Fuego. Pp. 203-224 en J. Rabassa (ed.). Advances in Geomorphology and Quaternary Studies in Argentina. Selected papers of the VI Argentine Congress of Geomorphology and Quaternary Studies. Springer Verlag. The Neatherlands. https://doi.org/10.1007/978-3-319-54371-0.

Wetzel, R. G. 2001. Limnology, Lake and River Ecosystems. Academic Press, San Diego.

Wetzel, R. G., and Likens, G. 2000. Limnological analyses. Springer Science and Business Media. https://doi.org/10.1007/978-1-4757-3250-4.

Williamson, C. E., D. P. Morris, M. L. Pace, and O. G. Olson. 1999. Dissolved organic carbon and nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm. Limnology and Oceanography 44:795-803. https://doi.org/10.4319/lo.1999.44.3_part_2.0795.

Limnological, phytoplankton and bathymetry characteristics of a coloured lake (Laguna Negra, National Park Tierra del Fuego, Argentina)

Published

2023-02-26

How to Cite

Rodríguez, P., González Garraza, G., López, R., Coronato, A., Mataloni, G., Granitto, M., Malits, A., & Veira, F. (2023). Limnological, phytoplankton and bathymetry characteristics of a coloured lake (Laguna Negra, National Park Tierra del Fuego, Argentina). Ecología Austral, 33(1), 285–299. https://doi.org/10.25260/EA.23.33.1.0.2014