Review and optimization of the method to extract phytoplankton chlorophyll-a in aquatic environments

Authors

  • Amalia L. Bursztyn Fuentes Centro Austral de Investigaciones Científicas (CADIC-CONICET). Ushuaia, Tierra del Fuego, Argentina. Universidad Nacional de Tierra del Fuego, Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA)
  • María Granitto Universidad Nacional de Tierra del Fuego, Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA)
  • María C. Maluendez Testoni Centro Austral de Investigaciones Científicas (CADIC-CONICET). Ushuaia, Tierra del Fuego, Argentina
  • María V. Castro Centro Austral de Investigaciones Científicas (CADIC-CONICET). Ushuaia, Tierra del Fuego, Argentina
  • Patricia Rodríguez Centro Austral de Investigaciones Científicas (CADIC-CONICET). Ushuaia, Tierra del Fuego, Argentina. Universidad Nacional de Tierra del Fuego, Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA)

DOI:

https://doi.org/10.25260/EA.22.32.3.0.2031

Keywords:

phytoplankton, ethanol, acetone, extraction, pigment estimation, eutrophic conditions

Abstract

The quantification of phytoplankton chlorophyll-a concentration (Chl-a) is a routine determination in limnological, ecological and environmental studies. The aim of this study was to experimentally compare the most frequently used methodologies to determine Chl-a in order to find the most efficient and affordable method for aquatic environments. In three urban water bodies of Ushuaia (Tierra del Fuego, Argentina), we compared 11 methods, in 2 independent essays, which included different sample storage strategies, different solvents, filter cut-off and centrifugation. We observed that the ability to show significant differences in the technique depended on the water body under study. In all cases where significant differences were detected between treatments, hot ethanol (60-70 °C) was the solvent that allowed the best Chl-a extraction. Although the most commonly used method according to our literature survey is the one involving extraction with 90% acetone, the most efficient treatments in our experiment turned out to be those with hot ethanol (with an extraction efficiency between 14 and 98% higher, depending on the treatment and the water body).

References

Aminot, A., and F. Rey. 2001. Chlorophyll a: determination by spectroscopic methods, ICES Tech. Mar Environ Sci 30:1-18. https://doi.org/10.25607/OBP-278.

APHA. 2017. Standard Methods for the Examination of Water and Wastewater. APHA; Washington DC, USA.

Arvola, L. 1981. Spectrophotometry determination of chlorophyll-a and phaeopigments in ethanol extractions. Ann Bot Fennici 18:221-227. URL: jstor.org/stable/23725236.

Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. González, M. Tablada, and C. W. Robledo. InfoStat versión 2017. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL: infostat.com.ar.

Falkowski, P. G., and J. A. Raven. 2007. Aquatic photosynthesis. Second edition. Princeton University Press, New Jersey, USA. https://doi.org/10.1515/9781400849727.

Hosikian, A., S. Lim, R. Halim, and M. K. Danquah. 2010. Chlorophyll Extraction from Microalgae: A Review on the Process Engineering Aspects. International Journal of Chemical Engineering 2010:391632. https://doi.org/10.1155/2010/391632.

International Organization for Standardization. 1992. ISO 10260: Water quality – Measurement of biochemical parameters –Spectrometric determination of the chlorophyll-a concentration. First Edition. International Organization for Standardization, Geneva, Switzerland.

Jeffrey, S. W., and G. F. Humphrey. 1975. New Spectrophotometric Equations for Determining Chlorophylls a, b, c1 and c2 in Higher Plants, Algae and Natural Phytoplankton. Biochem Physiol Pflanzen 167:191-194. https://doi.org/10.1016/S0015-3796(17)30778-3.

Jespersen, A. M., and K. Christoffersen. 1987. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie 109:445-454.

Kirk, J. T. O. 2011. Light and photosynthesis in aquatic ecosystems. Second edition. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511623370.

Lorenzen, C. J. 1967. Determination of Chlorophyll and Pheopigments: Spectrophotometric Equations. Limnology and Oceanography 12:343-346. https://doi.org/10.4319/lo.1967.12.2.0343.

Macías-Sánchez, M. D., C. Mantell, M. Rodríguez, E. M. de la Ossa, L. M. Lubian, and O. Montero. 2009. Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina. Talanta 77(3):948-952. https://doi.org/10.1016/j.talanta.2008.07.032.

Marker, A. F. H. 1994. Chlorophyll a SCA Method Revision. Institute of Freshwater Ecology. National Rivers Authority, Bristol, UK. URL: tinyurl.com/mv69vka4.

Nusch, E. A. 1980. Comparision of methods for chlorophyll and phaeopigment determination. Arch Hydrobiol Limnol 14:14-36.

Pápista, É., É. Ács, and B. Böddi. 2002. Chlorophyll-a determination with ethanol – a critical test. Hydrobiologia 485:191-198. https://doi.org/10.1023/A:1021329602685.

Qin, H., S. Li, and D. Li. 2013. An improved method for determining phytoplankton chlorophyll a concentration without filtration. Hydrobiologia 707:81–95. https://doi.org/10.1007/s10750-012-1412-6.

Ritchie, R. J. 2006. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27-41. https://doi.org/10.1007/s11120-006-9065-9.

Ritchie, R. J. 2008. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 46(1):115-126. https://doi.org/10.1007/s11099-008-0019-7.

Sartory, D. P. 1982. Spectrophotometric analysis of chlorophyll a in freshwater phytoplankton. Technical Report TR 115. Department of Water Affairs, Hydrological Research Institute, South Africa.

Sartory, D. P., and J. U. Grobbelaar. 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114:177-187. https://doi.org/10.1007/BF00031869.

Schumann, R., N. Haubner, S. Klausch, and U. Karsten. 2005. Chlorophyll extraction methods for the quantification of green microalgae colonizing building facades. International Biodeterioration and Biodegradation 55(3):213-222. https://doi.org/10.1016/j.ibiod.2004.12.002.

Simon, D., and S. Helliwell. 1998. Extraction and quantification of chlorophyll a from freshwater green algae. Water Research 32(7):2220-2223. https://doi.org/10.1016/S0043-1354(97)00452-1.

Su, S., Y. Zhou, J. G. Qin, W. Yao, and Z. Ma. 2010. Optimization of the Method for Chlorophyll Extraction in Aquatic Plants. Journal of Freshwater Ecology 25(4):531-538. https://doi.org/10.1080/02705060.2010.9664402.

Wasmund, N., I. Topp, and D. Schories. 2006. Optimising the storage and extraction of chlorophyll samples. Oceanologia 48(1):125-144.

Webb, D. J., B. K. Burnison, A. M. Trimbee, and E. E. Prepas. 1992. Comparison of Chlorophyll a Extractions with Ethanol and Dimethyl Sulfoxide/Acetone, and a Concern about Spectrophotometric Phaeopigment correction. Can J Fish Aquat Sci 49:2331-2336. https://doi.org/10.1139/f92-256.

Wellburn, A. R. 1994. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. Journal of Plant Physiology 144(3):307-313. https://doi.org/10.1016/S0176-1617(11)81192-2.

Wetzel, R. G., and G. E. Likens. 2000. Composition and Biomass of Phytoplankton. Pp. 147-174 en R. G. Wetzel and G. E. Likens (eds.). Limnological Analyses. Third edition. Springer, New York, USA. https://doi.org/10.1007/978-1-4757-3250-4_10.

Wright, S. W., and R. F. C. Mantoura. 1997. Guidelines for collection and pigment analysis of field samples. Pp. 429-445 in S. W. Jeffrey, R. F. C. Mantoura and S. W. Wright (eds.). Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, Paris, France.

Wright, S. W., S. W. Jeffrey, and R. F. C. Mantoura. 1997. Evaluation of methods and solvents for pigment extraction. Pp. 261-282 in S. W. Jeffrey, R. F. C. Mantoura and S. W. Wright (eds.). Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. UNESCO Publishing, Paris, France.

Revisión y optimización metodológica para extraer clorofila-a fitoplanctónica en ambientes acuáticos

Published

2022-11-03

How to Cite

Bursztyn Fuentes, A. L., Granitto, M., Maluendez Testoni, M. C., Castro, M. V., & Rodríguez, P. (2022). Review and optimization of the method to extract phytoplankton chlorophyll-a in aquatic environments. Ecología Austral, 32(3), 1019–1028. https://doi.org/10.25260/EA.22.32.3.0.2031