Biomass accumulation in juvenile native shrubs exposed to different light levels associated to forest management schemes of exotic conifers

Authors

  • M. Melisa Rago Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Chubut, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • M. Florencia Urretavizcaya Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Chubut, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

DOI:

https://doi.org/10.25260/EA.23.33.1.0.2048

Keywords:

Berberis microphylla, Adesmia volckmannii, irradiance, thinning, harvesting, forest plantation, ponderosa pine, Patagonia

Abstract

Pinus ponderosa plantations established in the Patagonian steppe put ecosystem functions at risk if they are not properly managed. The response of shrubs to light variations caused by forest plantations and forestry interventions may influence their ecological role. In this work we evaluated the total biomass accumulation dynamics of calafate (Berberis microphylla) and mamuel choique (Adesmia volckmannii) at 20, 60 and 100% irradiance, and their response to the light increase that would occur after interventions such as thinning and harvesting. For each species we evaluated 1) the relationship between biomass and diameter at the base of the stem, 2) the biomass dynamics during two growing seasons in the three irradiance conditions, and 3) the early response to light increase in plants subjected to irradiances of 20 and 60%. In addition, 4) we compared the levels of irradiance that the proposed forest management schemes for the region would suppose with those evaluated here. For both species, biomass and diameter were linearly related and biomass accumulation was lower at 20% irradiances. Calafate showed a tendency to accumulate more biomass at 100%, and mamuel choique, at 60%, although no species showed differences between these irradiances. Whereas calafate from 20% irradiance only increased its biomass by increasing irradiance to 100%, mamuel choique did so by increasing it to 60%. These results suggest that the two species, at least in the juvenile phase, may acclimate to shade, and that mamuel choique would respond better to partial increases in light, as in the case of thinning. The response of calafate suggests that the proposed management, which irradiance levels would be lower than those evaluated here, would not be optimal for its development.

References

Arena, M. E., P. Postemsky, and N. R. Curvetto. 2012. Accumulation patterns of phenolic compounds during fruit growth and ripening of Berberis buxifolia, a native Patagonian species. New Zealand Journal of Botany 50:15-28. https://doi.org/10.1080/0028825X.2011.638644.

Bava, J. O., G. A. Loguercio, I. A. Orellana, M. F. Ríos Campano, M. M. Davel, H. Gonda, L. Heitzmann, M. Gómez, M. A. González, G. Salvador, and G. Zacconi. 2016. Evaluación ambiental estratégica Patagonia Andina. Una visión sobre dónde y cómo forestar. CIEFAP-FUNDFAEP, Esquel, Chubut, Argentina.

Bava, J. O., G. A. Loguercio, and G. Salvador. 2015. ¿Por qué plantar en Patagonia? Estado actual y el rol futuro de los bosques plantados. Ecología Austral 25:101-111. https://doi.org/10.25260/EA.16.25.2.0.155.

Bremer, L. L., and K. A. Farley. 2010. Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodiversity and Conservation 19:3893-3915. https://doi.org/10.1007/s10531-010-9936-4.

Caballé, G., M. E. Fernández, J. Gyenge, V. Lantschner, V. Rusch, F. Letourneau, and L. Borrelli. 2016. Silvopastoral Systems Based on Natural Grassland and Ponderosa Pine in Northwestern Patagonia, Argentina. Pp. 89-115 in P. Peri, F. Dube and A. Varella (eds.). Advances in Agroforestry. Silvopastoral Systems in Southern South America. Springer, Suiza. https://doi.org/10.1007/978-3-319-24109-8.

Cardoso, M. B., A. H. Ladio, S. M. Dutrus, and M. Lozada. 2015. Preference and calorific value of fuelwood species in rural populations in northwestern Patagonia. Biomass and Bioenergy 81:514-520. https://doi.org/10.1016/j.biombioe.2015.08.003.

Chamorro, M. F., A. Ladio, and S. Molares. 2019a. Patagonian Berries. An ethnobotanical approach to exploration of their nutraceutical potential. Pp. 50-69 in J. L. Martínez, A. Munoz-Acevedo and M. Rai (eds.). Ethnobotany: local knowledge and traditions. CRC Press, Boca Raton, USA. https://doi.org/10.1201/9780429424069-4.

Chamorro, M. F., G. Reiner, C. Theoduloz, A. Ladio, G. Schmeda-Hirschmann, S. Gómez-Alonso, and F. Jiménez-Aspee. 2019b. Polyphenol composition and (bio)activity of Berberis species and wild strawberry from the Argentinean Patagonia. Molecules 24:1-24. https://doi.org/10.3390/molecules24183331.

Cheng, C., Y. Wang, X. Fu, M. Xu, X. Dai, and H. Wang. 2017. Thinning effect on understory community and photosynthetic characteristics in a subtropical Pinus massoniana plantation. Canadian Journal of Forest Research 47:1104-1115. https://doi.org/10.1139/cjfr-2017-0082.

Chojnacky, D. C., and M. Milton. 2008. Measuring Carbon in Shrubs. Field Measurements for Forest Carbon Monitoring. Pp. 45-72 in C. M. Hoover (ed.). Field measurements for forest carbon monitoring: A landscape-scale approach. Springer, New York, USA. https://doi.org/10.1007/978-1-4020-8506-2_5.

CIEFAP-UCAR. 2017. Inventario nacional de plantaciones forestales. Inventario de plantaciones forestales en secano. Región Patagonia. MINAGRI, Argentina.

Conti, G., L. D. Gorné, S. R. Zeballos, M. L. Lipoma, G. Gatica, E. Kowaljow, J. I. Whitworth-Hulse, A. Cuchietti, M. Poca, S. Pestoni, and P. M. Fernandes. 2019. Developing allometric models to predict the individual aboveground biomass of shrubs worldwide. Global Ecology and Biogeography 28:961-975. https://doi.org/10.1111/geb.12907.

Davel, M., G. Caballé, H. Gonda, L. Chauchard, and R. Sbrancia. 2015. Los tratamientos silvícolas. Pp. 191-243 in L. Chauchard, M. C. Frugoni and C. Nowak (eds.). Manual de Buenas Prácticas para el manejo de plantaciones forestales en el noroeste de la Patagonia. MINAGRI, Buenos Aires, Argentina.

Davis, L. R., and K. J. Puettmann. 2009. Initial response of understory vegetation to three alternative thinning treatments. Journal of Sustainable Forestry 28:904-934. https://doi.org/10.1080/10549810903344611.

Dezzotti, A., A. Mortoro, A. Medina, R. Sbrancia, and H. A. Beltrán. 2019. Plant richness and life form diversity along vegetation and forest use gradients in Northwestern Patagonia of Argentina. Cerne 25:301-313. https://doi.org/10.1590/01047760201925032645.

Fernández, M. E., J. E. Gyenge, G. Dalla Salda, and T. M. Schlichter. 2002. Silvopastoral systems in northwestern Patagonia I: growth and photosynthesis of Stipa speciosa under different levels of Pinus ponderosa cover. Agroforestry Systems 55:27-35. https://doi.org/10.1023/A:1020238330817.

Fernández, M. E., J. E. Gyenge, and T. M. Schlichter. 2004. Shade acclimation in the forage grass Festuca pallescens: Biomass allocation and foliage orientation. Agroforestry Systems 60:159-166. https://doi.org/10.1023/B:AGFO.0000013276.68254.78.

Fernández, M. E., J. E. Gyenge, and T. M. Schlichter. 2006. Growth of Festuca pallescens in silvopastoral systems in Patagonia, part 1: Positive balance between competition and facilitation. Agroforestry Systems 66:259-269. https://doi.org/10.1007/s10457-005-0590-x.

Golluscio, R. A., R. Irueta, and P. A. Cipriotti. 2014. The elusive quantification of nitrogen fixation in xeric shrubs: The case of Adesmia volckmanni, a Patagonian leguminous shrub. Journal of Arid Environments 111:22-26. https://doi.org/10.1016/j.jaridenv.2014.07.006.

Golluscio, R., A. Faigón, and M. Tanke. 2006. Spatial distribution of roots and nodules, and δ15N evidence of nitrogen fixation in Adesmia volckmanni, a Patagonian leguminous shrub. Journal of Arid Environments 67:328-335. https://doi.org/10.1016/j.jaridenv.2006.02.005.

Gonda, H. 2001. Manejo de Pino Ponderosa. Modelo preliminar para plantaciones en sitios de calidad media en la Patagonia andina. Patagonia Forestal 3:7-10.

Gonda, H., G. Cortés, J. Bava, and G. Loguercio. 2007. Ensayo de Raleo en un rodal de pino ponderosa en Abra Ancha: Resultados a los 10 años. Actas Ecoforestar.

Köppen, W., and R. Geiger 1936. Das geographische System der Klimate. Verlag von Gebrüder Borntraeger, Berlin.

Landrum, L. R. 1999. Revision of Berberis (Berberidaceae) in Chile and Adjacent Southern Argentina. Annals of the Missouri Botanical Garden 86:793-834. https://doi.org/10.2307/2666170.

Lantschner, M. V., V. Rusch, and C. Peyrou. 2008. Bird assemblages in pine plantations replacing native ecosystems in NW Patagonia. Biodiversity and Conservation 17:969-989. https://doi.org/10.1007/s10531-007-9243-x.

Letourneau, F., G. Caballé, E. Andenmatten, and N. De Agostini. 2010. Simulación de manejo silvícola en base a umbrales de cobertura en sistemas silvopastoriles compuestos por Festuca pallescens y Pinus ponderosa. Primer Congreso Internacional Agroforestal Patagónico 277:283-298. https://doi.org/10.52904/0718-4646.2011.372.

Loreau, M., B. Schmid, D. Tilman, D. A. Wardle, S. Naeem, P. Inchausti, J. Bengtsson, J. P. Grime, A. Hector, D. U. Hooper, M. A. Huston, and D. Raffaelli. 2001. Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science 294:804-808. https://doi.org/10.1126/science.1064088.

Mori, A. S., T. Furukawa, and T. Sasaki. 2013. Response diversity determines the resilience of ecosystems to environmental change. Biological Reviews 88:349-364. https://doi.org/10.1111/brv.12004.

Neill, A. R., and K. J. Puettmann. 2013. Managing for adaptive capacity: thinning improves food availability for wildlife and insect pollinators under climate change conditions. Canadian Journal of Forest Research 43:428-440. https://doi.org/10.1139/cjfr-2012-0345.

Ochoa, J. J., E. L. N. Moncunill, J. G. Puntieri, B. S. Güenuleo, S. E. Stefe, M. L. Cardozo, F. Neranzi Barriga, E. E. Martínez, S. Torrego, and S. Naón. 2019. Saberes locales y frutos comestibles de plantas nativas en la Comarca Andina Del Paralelo 42° (Patagonia, Argentina). Ethnoscientia 4:1-9. https://doi.org/10.22276/ethnoscientia.v4i1.247.

Orellana, I. A., and E. Raffaele. 2012. Effect of Pseudotsuga menziesii Plantations on Vascular Plants Diversity in Northwest Patagonia, Argentina. Pp. 195-208 in G. A. Lameed (ed.). Biodiversity Enrichment in a Diverse World. IntechOpen. https://doi.org/10.5772/3088.

Oyarzabal, M., J. Clavijo, L. Oakley, F. Biganzoli, P. Tognetti, I. Barberis, H. M. Maturo, R. Aragón, P. I. Campanello, D. Prado, M. Oesterheld, and R. J. C. León. 2018. Unidades de vegetación de la Argentina. Ecología Austral 28:040-063. https://doi.org/10.25260/ea.18.28.1.0.399.

Paritsis, J., and M. A. Aizen. 2008. Effects of exotic conifer plantations on the biodiversity of understory plants, epigeal beetles and birds in Nothofagus dombeyi forests. Forest Ecology and Management 255:1575-1583. https://doi.org/10.1016/j.foreco.2007.11.015.

Polasky, S., E. Nelson, J. Camm, B. Csuti, P. Fackler, E. Lonsdorf, C. Montgomery, D. White, J. Arthur, B. Garber-Yonts, R. Haight, J. Kagan, A. Starfield, and C. Tobalske. 2008. Where to put things? Spatial land management to sustain biodiversity and economic returns. Biological Conservation 141:1505-1524. https://doi.org/10.1016/j.biocon.2008.03.022.

Poorter, H., J. Bühler, D. Van Dusschoten, J. Climent, and J. Postma. 2012. Pot size matters: A meta-analysis of the effects of rooting volume on plant growth. Functional Plant Biology 39:839-850. https://doi.org/10.1071/FP12049.

R Core Team. 2021. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: R-project.org.

Raffaele, E., and T. Schlichter. 2000. Efectos de las plantaciones de pino ponderosa sobre la heterogeneidad de micrositios en estepas del noroeste patagónico. Ecología Austral 10:151-158.

Rago, M. M. 2021. Efectos del manejo silvícola y del ambiente lumínico sobre la vegetación en plantaciones de pino ponderosa en el noroeste patagónico. Doctora en biología. Universidad Nacional del Comahue, Bariloche, Argentina. Pp. 203.

Rago, M. M., M. F. Urretavizcaya, and G. E. Defossé. 2021. Relationships among forest structure, solar radiation, and plant community in ponderosa pine plantations in the Patagonian steppe. Forest Ecology and Management 502. https://doi.org/10.1016/j.foreco.2021.119749.

Reineke, H. L. 1933. Perfecting a Stand-Density Index for Even- Aged Forests. Journal of Agricultural Research 46:627-638.

Roderick, M. L., G. D. Farquhar, S. L. Berry, and I. R. Noble. 2001. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129:21-30. https://doi.org/10.1007/s004420100760.

Rusch, V., M. Sarasola, J. Corley, and T. Schlichter. 2004. Sustentabilidad de las Plantaciones de Coníferas Introducidas en la región Andino Patagónica: Biodiversidad e Invasión. Reporte final PIA 01/00. Bariloche, Argentina.

Rusch, V., A. Vila, B. Marques, and V. Lantschner. 2015. Conservación de la biodiversidad en sistemas productivos. Fundamentos y practicas aplicadas a forestaciones del noroeste de la Patagonia. MINAGRI-UCAR, Buenos Aires, Argentina.

Signorell, A., et al. 2022. DescTools: Tools for descriptive statistics. R package version 0.99.45.

Soriano, A. 1956. Los distritos florísticos de la Provincia Patagónica. Revista de Investigaciones Agrícolas 10:323-348.

Thompson, I. D., K. Okabe, J. A. Parrotta, E. Brockerhoff, H. Jactel, D. I. Forrester, and H. Taki. 2014. Biodiversity and ecosystem services: lessons from nature to improve management of planted forests for REDD-plus. Biodiversity and Conservation 23:2613-2635. https://doi.org/10.1007/s10531-014-0736-0.

Trentini, C. P., P. I. Campanello, M. Villagra, L. Ritter, A. Ares, and G. Goldstein. 2017. Thinning of loblolly pine plantations in subtropical Argentina: Impact on microclimate and understory vegetation. Forest Ecology and Management 384:236-247. https://doi.org/10.1016/j.foreco.2016.10.040.

Ulibarri, E. A. 1987. Las especies de Adesmia de la serie Microphyllae (Leguminosae-Papilionoideae). Darwiniana 27:315-388.

Wang, D., O. A. Olatunji, and J. Xiao. 2019. Thinning increased fine root production, biomass, turnover rate and understory vegetation yield in a Chinese fir plantation. Forest Ecology and Management 440:92-100. https://doi.org/10.1016/j.foreco.2019.03.012.

Wender, B. W., C. A. Harrington, and J. C. Tappeiner. 2004. Flower and fruit production of understory shrubs in western Washington and Oregon. Northwest Science 78:124-140.

Zeileis, A., and T. Hothorn. 2002. Diagnostic Checking in Regression Relationships. R News 2:7-10.

Biomass accumulation in juvenile native shrubs exposed to different light levels associated to forest management schemes of exotic conifers

Published

2023-02-12

How to Cite

Rago, M. M., & Urretavizcaya, M. F. (2023). Biomass accumulation in juvenile native shrubs exposed to different light levels associated to forest management schemes of exotic conifers. Ecología Austral, 33(1), 198–210. https://doi.org/10.25260/EA.23.33.1.0.2048