Reuse of dairy cattle slurry as an opportunity to recycle nitrogen and reduce its environmental impact
DOI:
https://doi.org/10.25260/EA.23.33.2.0.2057Keywords:
slurry application, ammonia volatilization, nitrous oxide emission, Argentine Rolling PampasAbstract
Dairy cattle slurry (liquid mixture of manure and water from the milking operation) can be reused for agricultural production in replacement for synthetic fertilizers. However, its high nitrogen (N) concentration could stimulate the volatilization of ammonia (NH3) and nitrous oxide (N2O) emission, with consequences for global warming. Our objectives were: to quantify NH3 and N2O loss in maize fertilized with surface-applied dairy cattle slurry or urea, and to relate N2O emission with soil ammonium, nitrate and water contents. We performed a manipulative field experiment where we measured both gaseous losses during an agricultural campaign. Slurry enhanced NH3 volatilization the day after the application (2.7±0.25 vs. 1.1±0.25 and 0.6±0.25 kg N-NH3.ha-1.day-1 for slurry, urea and the control, respectively) and direct N2O emission during three days after the application (75±13 vs. 28±5 y 26±6 µg N-N2O.m-2.h-1 for slurry, urea and the control, respectively). Four days after application, volatilization was higher with urea and N2O emissions were similar between treatments. The loss of NH3 accumulated throughout the maize growing season was higher for urea than for slurry, and the accumulated N2O emission was similar for both fertilizers. Nitrous oxide emissions were related to soil water content, initially introduced with slurry and then with rainfall. The loss of NH3 + N2O from the fertilizers after subtracting that of the control, was higher after the application of urea than slurry (10.8±1.2 and 3.1±0.7 kg N/ha or 0.53±0.06 and 0.18±0.04 kg N/t MS), and maize yield was similar for both fertilization treatments (19.0±0.7 t MS/ha). These results show that fertilization with dairy cattle slurry is a promising practice because it has a lower environmental footprint compared to synthetic fertilizers.
References
Álvarez, C. R., H. Rimski-Korsakov, P. Prystupa, and R. S. Lavado. 2007. Nitrogen dynamics and losses in direct-drilled maize systems. Commun Soil Sci Plant Anal 38:2045-2059. https://doi.org/10.1080/00103620701548712.
Araujo, P. I., J. M. Piñeiro-Guerra, L. Yahdjian, M. M. Acreche, C. Álvarez, et al. 2021. Drivers of N2O Emissions from Natural Forests and Grasslands Differ in Space and Time. Ecosystems 24:335-350. https://doi.org/10.1007/s10021-020-00522-7.
Bremner, J. M., and C. S. Mulvaney. 1982. Nitrogen-total. Pp. 595-624 en A. L. Page, R. H. Miller and D. R. Keeney (eds.). Methods of Soil Analysis: Chemical and microbiological properties. Part 2. Soil Science Society of America and American Society of Agronomy, Madison, WI, USA. https://doi.org/10.2134/agronmonogr9.2.2ed.c31.
Burke, W., D. Gabriels, and J. Bouma. 1986. Soil structure assessment. AA Balkema Publishers, Rotterdam.
Cañada, P., M. A. Herrero, A. Dejtiar, and M. I. Vankeirsbilck. 2018. Guía de buenas prácticas para el manejo de purines en tambo. Autoridad del Agua y Ministerio de Agroindustria de la Provincia de Buenos Aires, Buenos Aires.
F. Stuart Chapin, P. A. Matson, and P. M. Vitousek. 2002. Principles of Terrestrial Ecosystem Ecology. Springer New York, NY. https://doi.org/10.1007/978-1-4419-9504-9.
Davidson, E., and A. Mosier. 2004. Controlling losses to air. Pp. 251-259 en D. Hatch, D. Chadwick, S. Jarvis and J. Roker (eds.). Controlling nitrogen flows and losses. Wageningen Academic Publishers, The Netherlands.
Davidson, E. A. 1991. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. Pp. 219-235 en J. E. Rogers and W. B. Whitman (eds.). Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes. American Society for Microbiology, Washington DC, USA.
Davidson, E. A., M. Keller, H. E. Erickson, L. V. Verchot, and E. Veldkamp. 2000. Testing a Conceptual Model of Soil Emissions of Nitrous and Nitric Oxides: Using two functions based on soil nitrogen availability and soil water content, the hole-in-the-pipe model characterizes a large fraction of the observed variation of nitric oxide and nitrous oxide emissions from soils. BioScience 50:667-680. https://doi.org/10.1641/0006-3568(2000)050[0667:tacmos]2.0.co;2.
de Klein, C., and M. Harvey. 2012. Nitrous Oxide Chamber Methodology Guidelines. Global Research Alliance on Agricultural Greenhouse Gases. Ministry for Primary Industries, Wellington, New Zealand.
Della Chiesa, T., G. Piñeiro, and L. Yahdjian. 2019. Gross, background, and net anthropogenic soil nitrous oxide emissions from soybean, corn, and wheat croplands. J Environ Qual 48:16-23. https://doi.org/10.2134/jeq2018.07.0262.
Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. Gonzalez, M. Tablada, et al. 2020. InfoStat versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.
Drinkwater, L. E. 2004. Improving fertilizer nitrogen use efficiency through an ecosystem-based approach. Pp. 93-102 en A. R. Mosier, J. K. Syers and J. R. Freney (eds.). Agriculture and the nitrogen cycle. Island Press, Washington, USA.
Estellés Barber, F., and P. Martínez. 2022. Código de Buenas Prácticas. Estrategia Carbono Neutral 2050. ProVacuno, Madrid, España.
Hall, A. J., C. M. Rebella, C. M. Ghersa, and J. P. Culot. 1992. Field-crop systems of the pampas. Pp. 413-450 en C. J. Pearson (ed.). Field Crop Ecosystems. Ecosystems of the World. Elsevier, Amsterdam.
Herrero, M. A. and S. B. Gil. 2008. Consideraciones ambientales de la intensificación en producción animal. Ecología Austral 18:273-289.
Huygens, D., G. Orveillon, E. Lugato, S. Tavazzi, S. Comero, et al. 2020. Technical proposals for the safe use of processed manure above the threshold established for Nitrate Vulnerable Zones by the Nitrates Directive (91/676/EEC). Pp. 170. Joint Research Centre (JRC) of the European Commission, Luxembourg. https://data.europa.eu/doi/10.2760/373351.
INTA. 1973. Carta de Suelos de la República Argentina. Hoja 3360-33 Pérez Millán. Instituto Salesiano de Artes Gráficas, Buenos Aires.
IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1029/2000JD000115.
IPCC. 2019. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.En E. Calvo Buendía, K. Tanabe, A. Kranjc, J. Baasansuren, M. Fukuda, et al. (eds.). IPCC, Switzerland.
Jobbágy, E. G., S. Aguiar, G. Piñeiro, and L. A. Garibaldi. 2021. Impronta ambiental de la agricultura de granos en Argentina: revisando desafíos propios y ajenos. Ciencia Hoy 29(173):55-64. Asociación Civil Ciencia Hoy.
Krichels, A. H., P. M. Homyak, E. L. Aronson, J. O. Sickman, J. Botthoff, et al. 2022. Rapid nitrate reduction produces pulsed NO and N2O emissions following wetting of dryland soils. Biogeochemistry 158:233-250. https://doi.org/10.1007/s10533-022-00896-x.
Lampe, C., K. Dittert, B. Sattelmacher, M. Wachendorf, R. Loges, et al. 2006. Sources and rates of nitrous oxide emissions from grazed grassland after application of 15N-labelled mineral fertilizer and slurry. Soil Biol Biochem 38:2602-2613. https://doi.org/10.1016/j.soilbio.2006.03.016.
Lombardi, B., L. Orden, P. Varela, M. Garay, G. A. Iocoli, et al. 2022. Is dairy effluent an alternative for maize crop fertigation in semiarid regions? An approach to agronomic and environmental effects. Animals 12:2025. https://doi.org/10.3390/ani12162025.
Maris, S. C., D. Ábalos, F. Capra, G. Moscatelli, F. Scaglia, et al. 2021. Strong potential of slurry application timing and method to reduce N losses in a permanent grassland. Agr Ecosyst Environ 311:107329. https://doi.org/10.1016/j.agee.2021.107329.
Matson, P. A., R. Naylor, and I. I. Ortiz-Monasterio. 1998. Integration of environmental, agronomic, and economic aspects of fertilizer management. Science 280:112-115. https://doi.org/10.1126/science.280.5360.112.
Melgar, R., M. E. Camozzi, and M. M. Figueroa. 1999. Guía de Fertilizantes, Enmiendas y Productos Nutricionales. Proyecto Fertilizar, Instituto Nacional de Tecnología Agropecuaria (INTA).
Mulvaney, R. L. 1996. Nitrogen-Inorganic Forms. Pp. 1123-1184 en D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, et al. (eds.). Methods of Soil Analysis: Chemical Methods. Part 3. Soil Science Society of America and American Society of Agronomy, Madison, WI, USA. https://doi.org/10.2136/sssabookser5.3.c38.
Nevison, C. 2002. Indirect N2O emissions from agriculture. Pp. 361-380 en IPCC-NGGIP (eds.). Background Papers - IPCC Expert Meetings on Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.
Nômmik, H. 1973. Assessment of volatilization loss of ammonia from surface-applied urea on forest soil by N15 recovery. Plant Soil 38:589-603. https://doi.org/10.1007/BF00010699.
Nosetti, L., M. A. Herrero, M. Pol, V. Maldonado May, S. Korol, et al. 2002. Cuantificación y caracterización de agua y efluentes en establecimientos lecheros II. Calidad de efluentes y eficiencia de los procesos de tratamiento. Revista Investigación Veterinaria 4:45-54.
Parkin, T. B., and R. T. Venterea. 2010. Chapter 3. Chamber-Based Trace Gas Flux Measurements. Pp. 3-1 to 3-39 en R. F. Follett (ed.). Sampling Protocols.
Peoples, M. B., J. R. Freney, and A. R. Mosier. 1995. Minimizing gaseous losses of nitrogen. Pp. 565-602 en P. E. Bacon (ed.). Nitrogen Fertilization in the Environment. Marcel Dekker, New York, USA.
Pérez, M. G., R. I. Romaniuk, V. R. N. Cosentino, M. Busto, F. A. González, et al. 2021. Winter soil N2O emissions from a meat production system under direct grazing of Argentine Pampa. Anim Prod Sci 61:156-162. https://doi.org/10.1071/AN19517.
Pinheiro, J., D. Bates, and R Core Team. 2022. Nlme: Linear and Nonlinear Mixed Effects Models. URL: svn.r-project.org/R-packages/trunk/nlme.
Ravishankara, A. R., J. S. Daniel, and R. W. Portmann. 2009. Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 326:123-125. https://doi.org/10.1126/science.1176985.
Ritchie, S. W., J. J. Hanway, and G. O. Benson. 1986. How a corn plant develops. Iowa State University of Science and Technology. Cooperative Extension Service Ames, Iowa.
Rochette, P., D. A. Angers, M. H. Chantigny, M.-O. Gasser, J. D. MacDonald, et al. 2013. Ammonia volatilization and nitrogen retention: how deep to incorporate urea? J Environ Qual 42:1635-1642. https://doi.org/10.2134/jeq2013.05.0192.
Sanz-Cobena, A., L. Lassaletta, F. Estellés, A. Del Prado, G. Guardia, et al. 2014. Yield-scaled mitigation of ammonia emission from N fertilization: the Spanish case. Environ Res Lett 9:125005. https://doi.org/10.1088/1748-9326/9/12/125005.
Salmerón-Miranda, F., B. Båth, H. Eckersten, J. Forkman, and M. Wivstad. 2007. Aboveground nitrogen in relation to estimated total plant uptake in maize and bean. Nutr Cycling Agroecosyst 79:125-139. https://doi.org/10.1007/s10705-007-9102-x.
Schils, R., J. Schröder, and G. Velthof. 2020. Fertilizer Replacement Value. Pp. 189-214 en Biorefinery of Inorganics. https://doi.org/10.1002/9781118921487.ch5-1.
Shcherbak, I., N. Millar, and G. P. Robertson. 2014. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences of the United States of America 111:9199-9204. https://doi.org/10.1073/pnas.1322434111.
Vangeli, S., G. Posse, M. E. Beget, E. Otero Estrada, R. A. Valdettaro, et al. 2022. Effects of fertilizer type on nitrous oxide emission and ammonia volatilization in wheat and maize crops. Soil Use Manage 38(4):1519-1531. https://doi.org/10.1111/sum.12788.
Van Horn, H. H., A. C. Wilkie, W. J. Powers and R. A. Nordstedt. 1994. Components of dairy manure management systems. J Dairy Sci 77:2008-2030. https://doi.org/10.3168/jds.S0022-0302(94)77147-2.
Velthof, G. L., and J. Mosquera. 2011. The impact of slurry application technique on nitrous oxide emission from agricultural soils. Agr Ecosyst Environ 140:298-308. https://doi.org/10.1016/j.agee.2010.12.017.
Vertès, F., L. Delaby, K. Klumpp, and J. Bloor. 2019. Chapter 2. C-N-P uncoupling in grazed grasslands and environmental implications of management intensification. Pp. 15-34 en G. Lemaire, P. C. S. D. F. Carvalho, S. Kronberg, and S. Recous (eds.). Agroecosystem diversity. Reconciling contemporary agriculture and environmental quality. Academic Press. https://doi.org/10.1016/B978-0-12-811050-8.00002-9.
Viglizzo, E. F., and Z. E. Roberto. 1997. El componente ambiental en la intensificación ganadera. Rev Arg Prod Anim 17:271-295.
Watson, C. A., C. F. E. Topp, and J. Ryschawy. 2019. Chapter 10. Linking arable cropping and livestock production for efficient recycling of N and P. Pp. 169-188 en G. Lemaire, P. C. D. F. Carvalho, S. Kronberg and S. Recous (eds.). Agroecosystem diversity. Reconciling contemporary agriculture and environmental quality. Academic Press. https://doi.org/10.1016/B978-0-12-811050-8.00010-8.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Silvina I. Portela, Patricia I. Araujo, Silvina B. Restovich, Tomás Della Chiesa, Juliana M. Ponsa, Andrea Peñas Ballesteros
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors retain their rights as follows: 1) by granting the journal the right to its first publication, and 2) by registering the published article with a Creative Commons Attribution License (CC-BY 4.0), which allows authors and third parties to view and use it as long as they clearly mention its origin (citation or reference, including authorship and first publication in this journal). Authors can make other non-exclusive distribution agreements as long as they clearly indicate their origin and are encouraged to widely share and disseminate the published version of their work.