Fungi and algae as indicators of water quality in an urban stream

Authors

  • Sebastián Kravetz Instituto de Ecología y Desarrollo Sustentable INEDES (UNLu-CONICET). Luján, Buenos Aires, Argentina. Departamento de Ciencias Básicas, Universidad Nacional de Luján. Luján, Buenos Aires, Argentina
  • M. Carolina Rodríguez Castro Instituto de Ecología y Desarrollo Sustentable INEDES (UNLu-CONICET). Luján, Buenos Aires, Argentina. Departamento de Ciencias Básicas, Universidad Nacional de Luján. Luján, Buenos Aires, Argentina
  • Carolina Vilches Instituto de Ecología y Desarrollo Sustentable INEDES (UNLu-CONICET). Luján, Buenos Aires, Argentina. Departamento de Ciencias Básicas, Universidad Nacional de Luján. Luján, Buenos Aires, Argentina
  • Florencia Huta Universidad Nacional de Luján. Luján, Buenos Aires, Argentina
  • Adonis Giorgi Instituto de Ecología y Desarrollo Sustentable INEDES (UNLu-CONICET). Luján, Buenos Aires, Argentina. Departamento de Ciencias Básicas, Universidad Nacional de Luján. Luján, Buenos Aires, Argentina

DOI:

https://doi.org/10.25260/EA.23.33.2.0.2088

Keywords:

bioindicators, Luján river basin, periphytic algae, anamorphic fungi

Abstract

This study evaluated the response of anamorphic fungi and biofilm algae to changes in physicochemical variables of water quality. Samples were taken at five sites of the Gutiérrez stream, located in the vicinity of Luján city (Buenos Aires Province, Argentina), a system affected by effluents from textile industries. The samples were taken at five sampling sites: two upstream sites and three sites downstream the effluent. Samples for the study of physicochemical variables (dissolved oxygen, temperature, pH, conductivity, nitrates, ammonium, chlorides, BOD, COD), as well as samples of algal biofilms developing on submerged substrates, and fungi developing on litter were collected from each site. In the case of the algae, fluorometric measurements were done to estimate biomass, production and photosynthetic efficiency. The relative and total abundances of the groups present were evaluated through microscopic observations. Regarding fungi, the species present in the different sites were determined and the sporulation rate and activities of three enzymes were evaluated. These indicators were useful to point out polluted areas, and in particular the biological indicators also showed recovery areas. The most important chemical variables indicating contaminated areas were ammonia, phosphates and COD concentration. The species of aquatic fungi were very indicative, particularly the abundance of species compared to the first site. Regarding algae, the highest sensitivity to contamination was detected through chlorophyll and minimum fluorescence (Fo). Other indicators such as sporulation rates, enzymatic activities and algae groups, provided complementary information to evaluate the state of the stream, and were sensitive to diffuse and point contamination. The application of chemical and biological indicators is recommended to increase the sensitivity of water quality analyses and to evaluate the effects of pollution.

References

APHA. 2017. Standard Methods for the Examination of Water and Wastewater. APHA, Washington, DC, USA.

Arambarri, A. M., M. N. Cabello, and A. Mengascini. 1987a. New Hyphomycetes from Santiago river (Bs. As. Province, Argentina). Mycotaxon 29:29-35.

Arambarri, A. M., M. N. Cabello, and A. Mengascini. 1987b. Estudio sistemático de los Hyphomycetes del Río Santiago I. Darwiniana 2:293-301.

Arambarri, A. M., M. N. Cabello, and A. Mengascini. 1987c. New Hyphomycetes from Santiago river II. Mycotaxon 30:263-267.

Bai, Y., Q. Wang, K. Liao, Z. Jian, C. Zhao, and J. Qu. 2018. Fungal Community as a Bioindicator to Reflect Anthropogenic Activities in a River Ecosystem. Front Microbiol 9:3152. https://doi.org/10.3389/fmicb.2018.03152.

Bärlocher, F. 2005. Leaf Mass Loss Estimated by Litter Bag Technique. Pp. 37-42 en M. A. Graça, F. Bärlocher and M. O. Gessner (eds.). Methods to Study Litter Decomposition. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3466-0_6.

Bärlocher, F. 2000. Water-borne conidia of aquatic hyphomycetes: seasonal and yearly patterns in Catamaran Brook, New Brunswick, Canada. Can J Bot 78:157-167. https://doi.org/10.1139/b99-172.

Bärlocher, F., J. Helson, and D. Williams. 2010. Aquatic hyphomycete communities across a land-use gradient of Panamanian streams. Fundam Appl Limnol 177(3):209-221. https://doi.org/10.1127/1863-9135/2010/0177-0209.

Bartell, S. M. 2006. Biomarkers, Bioindicators, and Ecological Risk Assessment - A Brief Review and Evaluation. Environ Bioindic 1:60-73. https://doi.org/10.1080/15555270591004920.

Berón, L. 1984. Evaluación de la calidad de las aguas. Secretaría de Vivienda y Ordenamiento Ambiental Ministerio de Salud y Acción Social 1-51. Buenos Aires. Argentina.

Branco, S. M. 1984. Limnología Sanitaria, Estudio de la Polución de Aguas Continentales. Monografía Nº 28. OEA.

Cabello, M. N., M. C. Cazau, and A. M. Arambarri. 1990. New Hyphomycetes from Santiago river III (Buenos Aires province, Argentina). Mycotaxon 38:15-19.

Cabello, M. N., M. C. Cazau, and A. M. Arambarri. 1993. Estudio sistemático de los Hyphomycetes del río Santiago VI. Buenos Aires, Argentina. Bol Soc Arg Bot 29:11-14.

Cazau, M. C., A. M. Arambarri, and M. N. Cabello. 1990. New Hyphomycetes from Santiago river IV (Buenos Aires Province, Argentina). Mycotaxon 38:21-25.

Cazau, M. C. 1994. Estudio ecológico de Hyphomycetes de Río Santiago. Universidad Nacional de

La Plata. Facultad de Ciencias Naturales y Museo Tesis nº: 0629 Área: Ecología.

Chequer, F., G. Olivera, E. Ferraz, J. Cardoso, M. Zanoni, and D. Olivera. 2013. Textile dyes: dyeing process and environmental impact. Pp. 151-176 en M. Günay (ed.). Ecofriendly textile dyeing and finishing. InTech, Rijeka, Croacia. https://doi.org/10.5772/53659.

Cochero, J., M. Licursi, and N. Gómez. 2014. Changes in the epipelic diatom assemblage in nutrient rich streams to the variations of simultaneous stressors. Limnologica 51:15-23. https://doi.org/10.1016/j.limno.2014.10.004.

Cortázar Martínez, A., C. González Ramírez, C. Coronel Olivares, J. Escalante Lozada, J. Castro Rosas, and J. Villagómez Ibarra. 2012. Biotecnología aplicada a la degradación de colorantes de la industria textil. Universidad y Ciencia Trópico Húmedo 28:187-199.

Corcoll, N., B. M. Bonet, M. Leira, and H. Guasch. 2011. Chl-a fluorescence parameters as biomarkers of metal toxicity in fluvial biofilms: an experimental study. Hydrobiologia. 673(1):119-136. https://doi.org/10.1007/s10750-011-0763-8.

Cortelezzi, A., M. V. Sierra, N. Gómez, C. Marinelli, and A. Rodrigues Capítulo. 2013. Macrophyte s, Epipelic Biofilm, andInvertebrates as Biotic Indicators of Physical Habitat Degradation of Lowland Streams (Argentina). Environ Monit Assess 185:5801-5815. https://doi.org/10.1007/s10661-012-2985-2.

Darley, W. M. 1987. Biología de las Algas. Enfoque fisiológico. Limusa. México D.F.

Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. González, M. Tablada, and C. W. Robledo. 2008.

InfoStat, versión 2020, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

Domínguez, E., A. Giorgi, and N. Gómez (comps.). 2020. La bioindicación en el monitoreo y evaluación de los sistemas fluviales de Argentina. Bases para el análisis de la Integridad Ecológica EUDEBA. Pp. 272.

Equihua Zamora, M. N., O. García-Alaniz, G. Pérez Maqueo, M. Benítez, M. Kolb, et al. 2014. Integridad ecológica como indicador de la calidad ambiental. Pp. 687-710 en Bioindicadores: guardianes de nuestro futuro ambiental, El Colegio de la Frontera Sur, Instituto Nacional de Ecología y Cambio Climático.

Fernández, R., S. Vincenzo, and G. Smits. 2017. Evaluación de los hifomicetos acuáticos como bioindicadores de calidad ambiental en el río Chirgua (Bejuma, Venezuela). Gestión y Ambiente 20(1):82-94. https://doi.org/10.15446/ga.v20n1.62241.

Fernández, R., and G. Smits. 2020 Hifomicetos acuáticos como bioindicadores de calidad ambiental en el rio Vigirima (Guacara, Carabobo-Venezuela). Gestión y Ambiente 23(2):165-181. https://doi.org/10.15446/ga.v23n2.95686.

Ferreira, V., and M. A. S. Graça. 2006. Do invertebrate activity and current velocity affect fungal assemblage structure in leaves? Internat Rev Hydrobiol 91:1-14. https://doi.org/10.1002/iroh.200510833.

Frida, I., G. Reboredo, S. Mulvany, and A. Pascual. 1996. El cauce inferior del Río Luján. Calidad de sus aguas y dinámica fluvial. Facultad de Ingeniería. Universidad Nacional de la Plata. La Plata. Buenos Aires, Argentina. Pp. 1-13.

Genty, B., J. M. Briantais, and N. R. Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects 990(1):87-92. https://doi.org/10.1016/S0304-4165(89)80016-9.

Gessner, M. O., and E. Chauvet. 2002. A case for using litter breakdown to assess functional stream integrity. Ecol Appl 12:498-510. https://doi.org/10.1890/1051-0761(2002)012[0498:ACFULB]2.0.CO;2.

Giorgi, A., M. Banchero, S. Rivelli, O. Clarensio, and W. Cuevas. 1999. Algunas variables indicativas de la calidad del agua del tramo medio del río Luján. Actas VII Jornadas Pampeanas de Ciencias Naturales. Pp. 155-162.

Giorgi, A., and L. Malacalza. 2002. Effect of an industrial discharge on water quality and periphyton structure in pampean stream. Environ Monit Assess 75:107-119. https://doi.org/10.1023/A:1014474128740.

Gómez, N., and M. Licursi. 2001a. The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquat Ecol 35:173-181.

Gómez, N., and M. Licursi. 2001b. Abnormal forms in Pinnularia gibba (Bacillariophyceae) in a polluted lowland stream fromArgentina. Nova Hedwigia 77(3):389-398. https://doi.org/10.1127/0029-5035/2003/0077-0389.

Gómez, N., M. V. Sierra, J. Cochero, M. Licursi, and D. E. Bauer.2009. Epipelic biofilms as indicators of environmental changes in lowland fluvial systems. En Biofilms: Formation, Development and and Properties. Hauppauge New York: Nova Science.

Gómez, N., E. Domínguez, A. Rodrigues Capitulo, and H. Fernández. 2020. Los indicadores biológicos. Pp. 57-71 en E. Dominguez, A. Giorgi and N. Gómez (comps.) La bioindicación em el monitoreo y evaluación de los sistemas fluviales de la Argentina: bases para el análisis de la integridad ecológica.

Gordon, N. D., T. A. Mc Mahon, and B. L. Finlayson. 1992. Stream hydrology. J. Wiley and Sons, Toronto.

Graça, M. A. S., F. Bärlocher, and M. O. Gessner (eds.). 2005. Methods to study litter decomposition: A practical guide. Springer. Pp. 329.

Graça, M. A. S., and C. Canhoto. 2006. Leaf litter processing in low order streams. Limnética 25:1-10. https://doi.org/10.23818/limn.25.01.

Graça, M. A. S., V. Ferreira, C. Canhoto, A. C. Encalada, F. Guerrero-Bolaño, K. Wantzen, and L. Boyero. 2015. A conceptual model of litter breakdown in low order streams. Int Rev Hydrobiol 100:1-2. https://doi.org/10.1002/iroh.201401757.

Gulis, V., L. Marvanová, and E. Descals. 2005. An illustrated key to the common temperate species of aquatic hyphomycetes. Pp. 153-167 en M. A. S: Graça, F. Bärlocher and M. O. Gessner (eds.). Methods to study litter decomposition: A practical guide. Springer, The Netherlands. https://doi.org/10.1007/1-4020-3466-0_21.

Gulis, V., V. Ferreira, and M. A. S. Graça. 2006. Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshw Biol 51:1655-1669. https://doi.org/10.1111/j.1365-2427.2006.01615.x.

Harrington, T. 1997. Aquatic Hyphomycetes of 21 Rivers in Southern Ireland. Biology and Environment: Proc R Irish Acad 97(2):139-148.

Ingold, C. 1975. Hooker Lecture 1974: Convergent evolution in aquatic fungi: the tetraradiate spore. Biol J Linn Soc 7(1):1-25. https://doi.org/10.1111/j.1095-8312.1975.tb00731.x.

Kravetz, S., A. Giorgi, and B. González. 2016. Evaluación de una matriz para decolorar efluentes textiles utilizando Pleurotus ostreatus. Gestión y Ambiente 19(2):252-263.

Kravetz, S., B. González, A. Marano, and A. Giorgi. 2018. The genus Tetracladium in Pampean streams (Buenos Aires, Argentina). Phytotaxa 338(3):276-284. https://doi.org/10.11646/phytotaxa.338.3.5.

Lecerf, A., and E. Chauvet. 2008. Diversity and functions of leaf-associated fungi in human-altered streams. Freshw Biol 53(8):1658-1672. https://doi.org/10.1111/j.1365-2427.2008.01986.x.

Licursi, M., and N. Gómez. 2013. Short-term toxicity of hexavalent-chromium to epipsammic diatoms of a microtidal estuary (Río de la Plata): Responses from the individual cell to the community structure. Aquat Toxicol 134-135:82-91. https://doi.org/10.1016/j.aquatox.2013.03.007.

Luchetti, M. C., and A. Giorgi. 2009. ¿Cómo considerar las propiedades ecológicas de los sistemas acuáticos superficiales en la gestión ambiental pública? El caso del partido de Luján, Provincia de Buenos Aires, Argentina. Ingeniería Sanitaria y Ambiental 103:75-78.

Marvanová, L. 2011. Aquatic hyphomycete genera. En K. Seifert, G. Morgan-Jones, W. Gams and B. Kendrick (eds.). The Genera of Hyphomycetes. CBS_KNAW, Netherlands. Pp. 997.

Mastrángelo, M. M, M. E. Valdés, B. Eissa, N. A. Ossana, D. Barceló, et al. 2022. Occurrence and accumulation of pharmaceutical products in water and biota of urban lowland rivers. Sci Total Environ 828:154303. https://doi.org/10.1016/j.scitotenv.2022.154303.

Medeiros, A. O., P. Rocha, C. A. Rosa, and M. Graça. 2008. Litter breakdown in a stream affected by drainage from a gold mine. Fundament Appl Limnol 171:59-70. https://doi.org/10.1127/1863-9135/2008/0172-0059.

Medeiros, A. O., C. Pascoal, and M. Graça. 2009. Diversity and activity of aquatic fungi under low oxygen conditions. Freshw Biol 54:142-149. https://doi.org/10.1111/j.1365-2427.2008.02101.x.

Morin, S., T. T. Duong, and O. Herlory. 2008. Cadmium Toxicity and Bioaccumulation in Freshwater Biofilms. Arch Environ Contam Toxicol 54:173-186. https://doi.org/10.1007/s00244-007-9022-4.

O’Neill, C., F. R. Hawkes, D. L. Hawkes, N. D. Lourenco, H. M. Pinheiro, and W. Delee. 1999. Colour in textile effuents - sources measurement, discharge consents and simulations: A review. J Chem Technol Biotechnol 74:1009-1018. https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1009::AID-JCTB153>3.0.CO;2-N.

Pascoal, C., and F. Cassio. 2004. Contribution of fungi and bacteria to leaf decomposition in a polluted river. Appl Environ Microbio 70:5266-5273. https://doi.org/10.1128/AEM.70.9.5266-5273.2004.

Rodríguez Castro, M. C., G. Urrea, and H. Guasch. 2015. Influence of the interaction between phosphate and arsenate on periphyton's growth and its nutrient uptake capacity. Sci Total Environ 503-504:122-132. https://doi.org/10.1016/j.scitotenv.2014.06.094.

Romaní, A. M. 2001. Biofilms fluvials. Metabolisme heterotrofic I autotrofic en rius mediterranis (Arxius de les seccions de ciences: 129). Biología. Premi Institu de Estudis Catalans d´ Ecologia. Pp. 254.

Romaní, M. A., J. Artigas, A. Camacho, M. A. Graça, and C. Pascoal. 2009. La biota de los ríos: los microorganismos heterotróficos. Pp. 206-210 en A. Elosegi and S. Sabater (eds.). Conceptos y técnicas en ecología fluvial. Bilbao: Rubes editores.

Rott, U., and R. Minke. 1999. Overview of wastewater treatment and recycling in the textile processing industry. Water Sci Technol 40:137-144. https://doi.org/10.1016/S0273-1223(99)00381-9.

Sabater, S., H. Guasch, I. Muñoz, and A. Romaní. 2006. Hydrology, light and the use of organic and inorganic materials as structuring factors of biological communities in Mediterranean streams. Limnetica 25(1-2):335-348. https://doi.org/10.23818/limn.25.23.

Schoenlein-Crusius, I. H., and R. A. Piccolo Grandi. 2003. The diversity of aquatic Hyphomycetes in South America. Braz J Microbiol 34:183-193.

Shubert, L. E. (ed.). 1984. Algae as ecological Indicators. Academic Press, Inc. London.

Solé, M., I. Fetzer, R. Wennrich, K. Sridhar, H. Harms, and G. Krauss. 2008. Aquatic hyphomycete communities as potential bioindicators for assessing antropogenic stress. Sci Total Environ 389:557-565. https://doi.org/10.1016/j.scitotenv.2007.09.010.

Tarda, S., M. Saparrat, and N. Gómez. 2019. Assamblage of dematiaceous and Ingoldian fungi associated with leaf litter descomposing Typha latifolia L. (Typhaceae) in reiverine wetlands of the pampean plain (Argentina) exposed to different water quality. J Environ Manage 250:109409. https://doi.org/10.1016/j.jenvman.2019.109409.

Tolkkinen, M., H. Mykrä, M. Annala, A. Markkola, K. Vuori, and T. Muotka. 2015. Multi-stressor impacts on fungal diversity and ecosystem functions in streams: natural vs. anthropogenic stress. Ecology 96:672-683. https://doi.org/10.1890/14-0743.1.

Thomaz, S. M., L. M. Bini, and R. L. Bozelli. 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579:1-13. https://doi.org/10.1007/s10750-006-0285-y.

Vilches, C., A. Giorgi, M. Mastrángelo, and L. Ferrari. 2011. Non point contamination homogenizes the water quality of pampean streams. Bull Environm Contam Toxicol 87:147-151. https://doi.org/10.1007/s00128-011-0312-1.

Vilches, C., A. Giorgi, and M. A. Casco. 2013. Periphyton responses to non-point pollution in naturally eutrophic conditions in Pampean streams. Fundam Appl Limnol 183(1):63-74. https://doi.org/10.1127/1863-9135/2013/0415.

Vilches, C., A. Giorgi, M. C. Rodríguez Castro, and M. A. Casco. 2014. Periphyton Responses to non-point Pollution in Eutrophic-Humic Environments: An Experimental Study. Int J Environ Res 8(3):523-530.

Walsh, C., A. Roy, J. Feminella, P. Cottingham, P. Groffman, and R. Morgan II. 2005. The urban stream syndrome: current knowledge and the search for a cure. J N Am Benthol Soc 24(3):706-723. https://doi.org/10.1899/04-028.1.

Wesemberg, D., I. Kyriakides, and S. Agathos. 2003. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161-187. https://doi.org/10.1016/j.biotechadv.2003.08.011.

Whitton, B. A., E. Rott, and G. Friedrich (eds.). 1991. Use of Algae for Monitoring Rivers. Innsbruck: STUDIA, Studenten-förderungs-Ges. m.b.H. Pp. 193.

Fungi and algae as indicators of water quality in an urban stream

Published

2023-06-13

How to Cite

Kravetz, S., Rodríguez Castro, M. C., Vilches, C., Huta, F., & Giorgi, A. (2023). Fungi and algae as indicators of water quality in an urban stream. Ecología Austral, 33(2), 567–582. https://doi.org/10.25260/EA.23.33.2.0.2088