Megaincendios 2020 en Córdoba: Incidencia del fuego en áreas de valor ecológico y socioeconómico

Autores/as

  • M. Cecilia Naval Fernández Instituto de Altos Estudios Espaciales ‘Mario Gulich’ (CONAE-UNC), CONICET. Falda del Cañete, Córdoba, Argentina
  • Jimena Albornoz Instituto de Altos Estudios Espaciales ‘Mario Gulich’ (CONAE-UNC), CONICET. Falda del Cañete, Córdoba, Argentina. Agencia Nacional de Promoción Científica y Tecnológica
  • Laura M. Bellis Instituto de Altos Estudios Espaciales ‘Mario Gulich’ (CONAE-UNC), CONICET. Falda del Cañete, Córdoba, Argentina. Cátedra de Ecología, Facultad de Ciencias Exactas Físicas y Naturales. Universidad Nacional de Córdoba. Córdoba, Argentina
  • Carolina Baldini Instituto de Altos Estudios Espaciales ‘Mario Gulich’ (CONAE-UNC), CONICET. Falda del Cañete, Córdoba, Argentina
  • Julieta Arcamone Instituto de Altos Estudios Espaciales ‘Mario Gulich’ (CONAE-UNC), CONICET. Falda del Cañete, Córdoba, Argentina
  • Luna Silvetti Instituto de Altos Estudios Espaciales ‘Mario Gulich’ (CONAE-UNC), CONICET. Falda del Cañete, Córdoba, Argentina
  • M. Paula Álvarez Instituto de Altos Estudios Espaciales ‘Mario Gulich’ (CONAE-UNC), CONICET. Falda del Cañete, Córdoba, Argentina
  • Juan P. Argañaraz Instituto de Altos Estudios Espaciales ‘Mario Gulich’ (CONAE-UNC), CONICET. Falda del Cañete, Córdoba, Argentina

DOI:

https://doi.org/10.25260/EA.23.33.1.0.2120

Palabras clave:

áreas naturales protegidas, bosque nativo, cuarentena, Gran Chaco Americano, grandes incendios, pandemia, riesgo de incendios

Resumen

En el año 2020, las Sierras de Córdoba registraron la temporada de incendios más extrema de la memoria colectiva reciente, con daños ecológicos y socioeconómicos severos. En este trabajo se cartografiaron los incendios de 2020 utilizando imágenes Sentinel 2, se comparó la temporada con estadísticas históricas en función del número de incendios, la superficie quemada, la distribución del tamaño de los incendios y la frecuencia en relación con el período 1987-2019. También se analizó la incidencia del fuego en áreas de valor ecológico (áreas naturales protegidas [ANP], áreas prioritarias para la conservación [APC] y áreas de bosque nativo protegidas por la Ley de Bosques [Ley Nacional 26331/07]) y en áreas de valor socioeconómico (tierras destinadas a usos productivos y residenciales, considerando su valor fiscal). En 2020 se quemaron 291866 ha en las Sierras de Córdoba, constituyéndose en la segunda temporada de incendios con mayor superficie quemada en 34 años, con 5 megaincendios (≥10000 ha). Muchas áreas quemadas presentaron recurrencias de fuego entre 3 y 9 años en promedio, lo que las hace áreas hotspot de fuego en las sierras. Las llamas afectaron más del 5% del territorio declarado como ANP, 12% de las APC y 12% de los territorios protegidos por la Ley de Bosques. El fuego afectó principalmente parcelas rurales y, en menor medida, urbanas, con un valor fiscal de AR$8677 y 24592 millones, respectivamente. La sequía extrema y la disponibilidad de combustible determinaron la ocurrencia de los megaincendios, mientras que el contexto de pandemia —con restricciones a la circulación de personas— sugiere que los incendios no fueron originados por habitantes urbanos negligentes. Los daños ocasionados por los megaincendios y la posibilidad de escenarios similares a futuro demandan avanzar hacia un manejo integral de la problemática del fuego en la provincia de Córdoba.

Citas

Albanesi, S., S. Dardanelli, and L. M. Bellis. 2014. Effects of fire disturbance on bird communities and species of mountain Serrano forest in central Argentina. Journal of Forest Research 19:105-114. https://doi.org/10.1007/s10310-012-0388-4.

Argañaraz, J. P., and L. M. Bellis. 2021. Evaluation of Burn Severity for the Fires of 2020 in the Mountains of Córdoba : Integration of Field and Remote Sensing Data. Pp. 1-6 en 2021 XIX Workshop on Information Processing and Control (RPIC). IEEE, SAN JUAN, Argentina. https://doi.org/10.1109/RPIC53795.2021.9648471.

Argañaraz, J. P., A. M. Cingolani, L. M. Bellis, and M. A. Giorgis. 2020. Fire incidence along an elevation gradient in the mountains of central Argentina. Ecología Austral 30:268-281. https://doi.org/10.25260/EA.20.30.2.0.1054.

Argañaraz, J. P., G. Gavier Pizarro, M. Zak, and L. M. Bellis. 2015a. Fire regime, climate, and vegetation in the Sierras de Córdoba, Argentina. Fire Ecology 11:55-73. https://doi.org/10.4996/fireecology.1101055.

Argañaraz, J. P., G. Gavier Pizarro, M. Zak, M. A. Landi, and L. M. Bellis. 2015b. Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina. Science of The Total Environment 520:1-12. https://doi.org/10.1016/j.scitotenv.2015.02.081.

Argañaraz, J. P., M. A. Landi, S. J. Bravo, G. I. Gavier-Pizarro, C. M. Scavuzzo, and L. M. Bellis. 2016. Estimation of live fuel moisture content from MODIS images for fire danger assessment in Southern Gran Chaco. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9:5339-5349. https://doi.org/10.1109/JSTARS.2016.2575366.

Argañaraz, J. P., M. A. Landi, C. M. Scavuzzo, and L. M. Bellis. 2018. Determining fuel moisture thresholds to assess wildfire hazard: a contribution to an operational early warning system. PLoS ONE 13(10):e0204889. https://doi.org/ https://doi.org/10.1371/journal.pone.0204889.

Argañaraz, J. P., V. C. Radeloff, A. Bar-Massada, G. I. Gavier-Pizarro, C. M. Scavuzzo, and L. M. Bellis. 2017. Assessing wildfire exposure in the Wildland-Urban Interface area of the mountains of central Argentina. Journal of Environmental Management 196:499-510. https://doi.org/10.1016/j.jenvman.2017.03.058.

Arnold, I., and A. Brown. 2018. Evaluación del Gran Chaco Americano. Tarija, Bolivia.

de la Barrera, F., F. Barraza, P. Favier, V. Ruiz, and J. Quense. 2018. Megafires in Chile 2017: Monitoring multiscale environmental impacts of burned ecosystems. Science of The Total Environment 637-638:1526-1536. https://doi.org/10.1016/j.scitotenv.2018.05.119.

Berlinck, C. N., and E. K. L. Batista. 2020. Good fire, bad fire: It depends on who burns. Flora 268:151610. https://doi.org/10.1016/j.flora.2020.151610.

Bonansea, M., and R. L. Fernández. 2013. Remote sensing of suspended solids concentration in a reservoir with frequent wildland fires on its watershed. Water Science and Technology 67:217-223. https://doi.org/10.2166/wst.2012.560.

Bowman, D. M. J. S., C. A. Kolden, J. T. Abatzoglou, F. H. Johnston, G. R. van der Werf, and M. Flannigan. 2020. Vegetation fires in the Anthropocene. Nature Reviews Earth and Environment 1:500-515. https://doi.org/10.1038/s43017-020-0085-3.

Cabido, M., S. R. Zeballos, M. Zak, M. L. Carranza, M. A. Giorgis, J. J. Cantero, and A. T. R. Acosta. 2018. Native woody vegetation in central Argentina: Classification of Chaco and Espinal forests. Applied Vegetation Science 21:298-311. https://doi.org/10.1111/avsc.12369.

Carbone, L. M., and R. Aguilar. 2017. Fire frequency effects on soil and pollinators: what shapes sexual plant reproduction? Plant Ecology 218:1283-1297. https://doi.org/10.1007/s11258-017-0768-0.

Carbone, L. M., N. Aguirre-Acosta, J. Tavella, and R. Aguilar. 2017. Cambios florísticos inducidos por la frecuencia de fuego en el Chaco Serrano. Boletín de la Sociedad Argentina de Botánica 52:753-778. https://doi.org/10.31055/1851.2372.v52.n4.18861.

Cingolani, A. M., M. A. Giorgis, L. E. Hoyos, and M. Cabido. 2022. La vegetación de las montañas de Córdoba (Argentina) a comienzos del siglo XXI: un mapa base para el ordenamiento territorial. Boletín de la Sociedad Argentina de Botánica 57:65-100. https://doi.org/10.31055/1851.2372.v57.n1.34924.

Cingolani, A. M., M. Poca, M. A. Giorgis, M. V. Vaieretti, D. E. Gurvich, J. I. Whitworth-Hulse, and D. Renison. 2015. Water provisioning services in a seasonally dry subtropical mountain: Identifying priority landscapes for conservation. Journal of Hydrology 525:178-187. https://doi.org/10.1016/j.jhydrol.2015.03.041.

Cingolani, A. M., M. V. Vaieretti, M. A. Giorgis, N. La Torre, J. I. Whitworth-Hulse, and D. Renison. 2013. Can livestock and fires convert the sub-tropical mountain rangelands of central Argentina into a rocky desert? The Rangeland Journal 35:285-297. https://doi.org/10.31055/1851.2372.v57.n1.34924.

Couto-García, L. C., J. K. Szabo, F. de Oliveira Roque, A. de Matos Martins Pereira, C. Nunes da Cunha, G. A. Damasceno-Júnior, R. G. Morato, W. M. Tomas, R. Libonati, and D. B. Ribeiro. 2021. Record-breaking wildfires in the world’s largest continuous tropical wetland: Integrative fire management is urgently needed for both biodiversity and humans. Journal of Environmental Management 293:112870. https://doi.org/10.1016/j.jenvman.2021.112870.

Deon, J. U. 2020. Donde hubo incendios negocios quedan. Desmontes, despojos y acaparamientos inmobiliarios, megamineros de canteras y del agronegocio en las Sierras Pampeanas, Argentina. Naturaleza de Derechos 2:45-76.

Eklund, J., J. P. G. Jones, M. Räsänen, J. Geldmann, A.-P. Jokinen, A. Pellegrini, D. Rakotobe, O. S. Rakotonarivo, T. Toivonen, and A. Balmford. 2022. Elevated fires during COVID-19 lockdown and the vulnerability of protected areas. Nature Sustainability 5:603-609. https://doi.org/10.1038/s41893-022-00884-x.

Ferreras, A. E., G. Funes, and L. Galetto. 2015. The role of seed germination in the invasion process of Honey locust (Gleditsia triacanthos L., Fabaceae): comparison with a native confamilial: Germination of the Invasive G. Triacanthos. Plant Species Biology 30:126-136. https://doi.org/10.1111/1442-1984.12041.

Fick, S. E., and R. J. Hijmans. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas: new climate surfaces for global land areas. International Journal of Climatology 37:4302-4315. https://doi.org/10.1002/joc.5086.

Fidelis, A., S. Alvarado, A. Barradas, and V. Pivello. 2018. The Year 2017: Megafires and Management in the Cerrado. Fire 1:49. https://doi.org/10.3390/fire1030049.

Geary, W. L., A. Buchan, T. Allen, D. Attard, M. J. Bruce, L. Collins, T. E. Ecker, T. A. Fairman, T. Hollings, E. Loeffler, A. Muscatello, D. Parkes, J. Thomson, M. White, and E. Kelly. 2022. Responding to the biodiversity impacts of a megafire: A case study from south-eastern Australia’s Black Summer. Diversity and Distributions 28:463-478. https://doi.org/10.1111/ddi.13292.

Giorgis, M. A., A. M. Cingolani, D. E. Gurvich, P. A. Tecco, J. Chiapella, F. Chiarini, and M. Cabido. 2017. Changes in floristic composition and physiognomy are decoupled along elevation gradients in central Argentina. Applied Vegetation Science 20:558-571. https://doi.org/10.1111/avsc.12324.

Giorgis, M. A., A. M. Cingolani, I. Teich, D. Renison, and I. Hensen. 2010. Do Polylepis australis trees tolerate herbivory? Seasonal patterns of shoot growth and its consumption by livestock. Plant Ecology 207:307-319. https://doi.org/10.1007/s11258-009-9674-4.

Giorgis, M. A., M. V. Palchetii, R. Morero, M. Cabido, J. O. Chiapella, and A. M. Cingolani. 2021a. Flora vascular de las montañas de Córdoba (Argentina): características y distribución de las especies a través del gradiente altitudinal. Boletín de la Sociedad Argentina de Botánica 56:327-345. https://doi.org/10.31055/1851.2372.v56.n3.30355.

Giorgis, M. A., S. R. Zeballos, L. Carbone, H. Zimmermann, H. von Wehrden, R. Aguilar, A. E. Ferreras, P. A. Tecco, E. Kowaljow, F. Barri, D. E. Gurvich, P. Villagra, and P. Jaureguiberry. 2021b. A review of fire effects across South American ecosystems: the role of climate and time since fire. Fire Ecology 17:11. https://doi.org/10.1186/s42408-021-00100-9.

Gupta, A., C. M. Bhatt, A. Roy, and P. Chauhan. 2020. COVID-19 lockdown a window of opportunity to understand the role of human activity on forest fire incidences in the Western Himalaya, India. Current Science 119:390-398. https://doi.org/10.18520/cs/v119/i2/390-398.

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, et al. 2013. High-resolution global maps of 21st-century forest cover change. Science 342:850-853. https://doi.org/10.1126/science.1244693.

Keeley, J. E., and A. D. Syphard. 2021. Large California wildfires: 2020 fires in historical context. Fire Ecology 17:1-11. https://doi.org/10.1186/s42408-021-00110-7.

Kowaljow, E., M. S. Morales, J. I. Whitworth-Hulse, S. R. Zeballos, M. A. Giorgis, M. Rodríguez Catón, and D. E. Gurvich. 2019. A 55-year-old natural experiment gives evidence of the effects of changes in fire frequency on ecosystem properties in a seasonal subtropical dry forest. Land Degradation and Development 30:266-277. https://doi.org/10.1002/ldr.3219.

Le Page, Y., D. Oom, J. M. N. Silva, P. Jönsson, and J. M. C. Pereira. 2010. Seasonality of vegetation fires as modified by human action: observing the deviation from eco-climatic fire regimes. Global Ecology and Biogeography 19:575-588. https://doi.org/10.1111/j.1466-8238.2010.00525.x.

Linley, G. D., C. J. Jolly, T. S. Doherty, W. L. Geary, D. Armenteras, C. M. Belcher, R. Bliege Bird, et al. 2022. What do you mean, ‘megafire’? Global Ecology and Biogeography 31:1906-1922. https://doi.org/10.1111/geb.13499.

Lipoma, M. L., G. Funes, and S. Díaz. 2018. Fire effects on the soil seed bank and post‐fire resilience of a semi‐arid shrubland in central Argentina. Austral Ecology 43:46-55. https://doi.org/10.1111/aec.12533.

Marcora, P. I., D. Renison, A. I. Pais-Bosch, M. R. Cabido, and P. A. Tecco. 2013. The effect of altitude and grazing on seedling establishment of woody species in central Argentina. Forest Ecology and Management 291:300-307. https://doi.org/10.1016/j.foreco.2012.11.030.

Marinelli, M. V., S. Bustos Revol, S. Viotto, J. P. Clemente, J. Benitez, N. Mari, C. M. Scavuzzo, and J. P. Argañaraz. 2019. Elaboración de la base de datos de incendios 1987-2018 para las Sierras de Córdoba mediante imágenes Landsat. Florencio Varela, Argentina.

Nolan, R. H., M. M. Boer, L. Collins, V. Resco de Dios, H. Clarke, M. Jenkins, B. Kenny, and R. A. Bradstock. 2020. Causes and consequences of eastern Australia’s 2019-20 season of mega-fires. Global Change Biology 26:1039-1041. https://doi.org/10.1111/gcb.14987.

Oliveira, S., A. Gonçalves, A. Benali, A. Sá, J. L. Zêzere, and J. M. Pereira. 2020. Assessing risk and prioritizing safety interventions in human settlements affected by large wildfires. Forests 11:859. https://doi.org/10.3390/f11080859.

Paudel, J. 2021. Short-run environmental effects of COVID-19: Evidence from forest fires. World Development 137:105120. https://doi.org/10.1016/j.worlddev.2020.105120.

Pausas, J. G. 2019. Generalized fire response strategies in plants and animals. Oikos 128:147-153. https://doi.org/10.1111/oik.05907.

Pausas, J. G., and J. E. Keeley. 2021. Wildfires and global change. Frontiers in Ecology and the Environment 19:387-395. https://doi.org/10.1002/fee.2359.

Piquer-Rodríguez, M., S. Torella, G. Gavier-Pizarro, J. Volante, D. Somma, R. Ginzburg, and T. Kuemmerle. 2015. Effects of past and future land conversions on forest connectivity in the Argentine Chaco. Landscape Ecology 30:817-833. https://doi.org/10.1007/s10980-014-0147-3.

Poulter, B., P. H. Freeborn, W. M. Jolly, and J. M. Varner. 2021. COVID-19 lockdowns drive decline in active fires in southeastern United States. Proceedings of the National Academy of Sciences 118:e2105666118. https://doi.org/10.1073/pnas.2105666118.

Renison, D., M. P. Chartier, M. Menghi, P. I. Marcora, R. C. Torres, M. Giorgis, I. Hensen, and A. M. Cingolani. 2015. Spatial variation in tree demography associated to domestic herbivores and topography: Insights from a seeding and planting experiment. Forest Ecology and Management 335:139-146. https://doi.org/10.1016/j.foreco.2014.09.036.

Roteta, E., A. Bastarrika, M. Franquesa, and E. Chuvieco. 2021. Landsat and Sentinel-2 Based Burned Area Mapping Tools in Google Earth Engine. Remote Sensing 13:816. https://doi.org/10.3390/rs13040816.

Sánchez, J. J., L. Srivastava, R. Marcos-Martínez, and D. Bachelet. 2021. Economic value of ecosystem service losses resulting from disturbances in western United States forest. Gen. Tech. Rep. PNW-GTR-992. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: 191-228.

Schmidt, I. B., L. C. Moura, M. C. Ferreira, L. Eloy, A. B. Sampaio, P. A. Dias, and C. N. Berlinck. 2018. Fire management in the Brazilian savanna: First steps and the way forward. Journal of Applied Ecology 55:2094-2101. https://doi.org/10.1111/1365-2664.13118.

Schneider, C. 2021. Cartografía digital de las Áreas Protegidas de la Provincia de Córdoba -Argentina-. MAP-Plataforma de Monitoreo de Áreas Protegidas. Asociación para la Conservación y el Estudio de la Naturaleza (ACEN). URL: monitoreoareasprotegidas.net.ar.

Schneider, C. 2020. Situación de las áreas protegidas de la Provincia de Córdoba. Asociación para la Conservación y el Estudio de la Naturaleza (ACEN). Áreas Protegidas de la Provincia de Córdoba: 2. Pp. 57.

Secretaría de Ambiente. 2020. Incendios 2020 de la Provincia de Córdoba. Informe diagnóstico. Análisis de información geográfica. Ministerio de Coordinación del Gobierno del a Provincia de Córdoba, Argentina. Pp. 162.

Servicio Meteorológico Nacional. 2020. Estado del clima en Argentina 2020. Ministerio de Defensa, Argentina. Pp. 50.

Silvestro, R., L. Saulino, C. Cavallo, E. Allevato, S. Pindozzi, E. Cervelli, P. Conti, S. Mazzoleni, and A. Saracino. 2021. The Footprint of Wildfires on Mediterranean Forest Ecosystem Services in Vesuvius National Park. Fire 4:95. https://doi.org/10.3390/fire4040095.

Stephens, S. L., N. Burrows, A. Buyantuyev, R. W. Gray, R. E. Keane, R. Kubian, S. Liu, F. Seijo, L. Shu, and K. G. Tolhurst. 2014. Temperate and boreal forest mega-fires: Characteristics and challenges. Frontiers in Ecology and the Environment 12:115-122. https://doi.org/10.1890/120332.

Torres, R. C., and D. Renison. 2016. Indirect facilitation becomes stronger with seedling age in a degraded seasonally dry forest. Acta Oecologica 70:138-143. https://doi.org/10.1016/j.actao.2015.12.006.

Torres, R., and D. Tamburini. 2018. Mamíferos de Córdoba y su estado de conservación. Editorial de la Universidad Nacional de Córdoba. Pp. 384.

Vaieretti, M. V., G. Conti, M. Poca, E. Kowaljow, L. Gorné, G. Bertone, A. M. Cingolani, and N. Pérez‐Harguindeguy. 2021. Plant and soil carbon stocks in grassland patches maintained by extensive grazing in the highlands of central Argentina. Austral Ecology 46:374-386. https://doi.org/10.1111/aec.12992.

Zak, M. R., M. Cabido, and J. G. Hodgson. 2004. Do subtropical seasonal forests in the Gran Chaco, Argentina, have a future? Biological Conservation 120:589-598. https://doi.org/10.1016/j.biocon.2004.03.034.

Megaincendios 2020 en Córdoba: Incidencia del fuego en áreas de valor ecológico y socioeconómico

Descargas

Archivos adicionales

Publicado

2023-02-12

Cómo citar

Naval Fernández, M. C., Albornoz, J., Bellis, L. M., Baldini, C., Arcamone, J., Silvetti, L., Álvarez, M. P., & Argañaraz, J. P. (2023). Megaincendios 2020 en Córdoba: Incidencia del fuego en áreas de valor ecológico y socioeconómico. Ecología Austral, 33(1), 136–151. https://doi.org/10.25260/EA.23.33.1.0.2120