Vegetation-rock mosaics maximize water services in high-mountain areas in central Argentina

Authors

  • Ana M. Cingolani Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba). Córdoba, Argentina
  • María Poca Instituto de Matemática Aplicada San Luis, Universidad Nacional de San Luis, CONICET, Grupo de Estudios Ambientales. San Luis, Argentina
  • Juan I. Whitworth-Hulse Instituto de Matemática Aplicada San Luis, Universidad Nacional de San Luis, CONICET, Grupo de Estudios Ambientales. San Luis, Argentina
  • Melisa A. Giorgis Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba). Córdoba, Argentina. Cátedra de Biogeografía, Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba. Córdoba, Argentina
  • María V. Vaieretti Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba). Córdoba, Argentina. Cátedra de Biogeografía, Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba. Córdoba, Argentina
  • M. Lucrecia Herrero Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba). Córdoba, Argentina. Instituto de Investigaciones Biológicas y Tecnológicas, Centro de Ecología y Recursos Naturales Renovables (CONICET-Universidad Nacional de Córdoba). Córdoba, Argentina
  • Silvia E. Navarro-Ramos Instituto de Investigaciones Biológicas y Tecnológicas, Centro de Ecología y Recursos Naturales Renovables (CONICET-Universidad Nacional de Córdoba). Córdoba, Argentina
  • Daniel Renison Instituto de Investigaciones Biológicas y Tecnológicas, Centro de Ecología y Recursos Naturales Renovables (CONICET-Universidad Nacional de Córdoba). Córdoba, Argentina

DOI:

https://doi.org/10.25260/EA.23.33.3.0.2127

Keywords:

dry season, ecosystem services, Sierras Grandes, streams, streamflow recession, water yield

Abstract

In systems with seasonal rainfall, the dry season water yield (streamflow relative to the catchment area) depends on the antecedent rainfall as well as on infiltration and evapotranspiration, processes which, in turn, are affected by the landscape characteristics. Our objective was to evaluate the effect of different landscape variables on water yield and the recession rate (rate of decrease in streamflow) during the dry season in high-mountain catchments in central Argentina. We selected 33 catchments 9-61 ha and, during the last part of the 2017 dry season, we measured streamflow in the catchment output points once a week, for seven consecutive weeks. For each catchment, we calculated the average water yield (mm/month) and a recession index (dimensionless) as the normalized difference between the water yield of the latest and the first dates. The landscapes extensively occupied by a tussock grassland-rock mosaic, with intermediate steepness and roughness, had the highest water yields (>5 mm/month). Conversely, water yield was lower either in smooth and vegetated landscapes as in extremely rugged, steep and rocky landscapes. On the other hand, recession rate was slower in the most rugged landscapes and abrupt in the smooth landscapes. Possibly, in smooth and vegetated landscapes, high amounts of water are lost through evapotranspiration, while in the most rugged landscapes, large amounts of water are lost by runoff after rainfall. Intermediate landscapes covered by a mosaic of rock and vegetation would be those that optimize water storage, minimizing losses through evapotranspiration. Therefore, to sustain current water yields, these types of landscape must be conserved, preventing soil erosion, leading to an increase in rocky areas.

References

Argibay, D. S., and D. Renison. 2018. Efecto del fuego y la ganadería en bosques de Polylepis australis (Rosaceae) a lo largo de un gradiente altitudinal en las montañas del centro de la Argentina. Bosque 39:145-150. https://doi.org/10.4067/S0717-92002018000100145.

ASTER GDEM Validation Team. 2009. ASTER Global DEM Validation Summary Report. METI and NASA. URL: lpdaac.usgs.gov.

Bart, R. R., and C. L. Tague. 2017. The impact of wildfire on baseflow recession rates in California. Hydrological Process 31:16-1673. https://doi.org/10.1002/hyp.11141.

Beltramone, C., O. Barbeito, and S. Ambrosino. 2002. La Carta Hidrogeomorfológica de la Cuenca del Río Primero. En XIX Congreso Nacional del Agua, Córdoba, Argentina.

Berardo, R. 2014. The evolution of self-organizing communication networks in high-risk social-ecological systems. International Journal of the Commons 8:237-258. https://doi.org/10.18352/ijc.463.

Cabido, M., R. Breimer, and G. Vega. 1987. Plant communities and associated soil types in a high plateau of the Córdoba mountains, central Argentina. Mountain Research and Development 7:25-42. https://doi.org/10.2307/3673322.

Capó, E. A., R. Aguilar, and D. Renison. 2016. Livestock reduces juvenile tree growth of alien invasive species with a minimal effect on natives: a field experiment using exclosures. Biological Invasions 18:2943-2950. https://doi.org/10.1007/s10530-016-1185-3

Carignano, C., D. Kröhling, S. Degiovanni, and M. Cioccale. 2014. Geomorfología. Pp. 747-822 en Relatorio XIX Congreso Geológico Argentino: Geología y Recursos Naturales de la Provincia de Córdoba. Asociación Geológica Argentina. Córdoba, Argentina.

Cingolani, A. M., D. Renison, M. R. Zak, and M. R. Cabido. 2004. Mapping vegetation in a heterogeneous mountain rangeland using Landsat data: an alternative method to define and classify land-cover units. Remote Sensing of Environment 92:84-97. https://doi.org/10.1016/j.rse.2004.05.008.

Cingolani, A. M., D. Renison, P. A. Tecco, D. E. Gurvich, and M. Cabido. 2008. Predicting cover types in a mountain range with long evolutionary grazing history: A GIS approach. Journal of Biogeography 35:538-551. https://doi.org/10.1111/j.1365-2699.2007.01807.x.

Cingolani, A. M., M. A. Giorgis, L. E. Hoyos, and M. Cabido. 2022. La vegetación de las montañas de Córdoba (Argentina) a comienzos del siglo XXI: un mapa base para el ordenamiento territorial. Boletín de la Sociedad Argentina de Botánica 57:51-60. https://doi.org/10.31055/1851.2372.v57. n1.34924.

Cingolani, A. M., M. Poca, J. I. Whitworth-Hulse, M. A. Giorgis, M. V. Vaieretti, L. Herrero, S. Navarro-Ramos, and D. Renison. 2020. Fire reduces dry season low flows in a subtropical highland of Central Argentina. Journal of Hydrology 590:125538. https://doi.org/10.1016/j.jhydrol.2020.125538.

Cingolani, A. M., M. Poca, M. A. Giorgis, M. V. Vaieretti, D. E. Gurvich, J. I Whitworth-Hulse, and D. Renison. 2015. Water provisioning services in a seasonally dry subtropical mountain: Identifying priority landscapes for conservation. Journal of Hydrology 525: 178-187. https://doi.org/10.1016/j.jhydrol.2015.03.041.

Cingolani, A. M., M. Cabido, D. Renison, and V. Solís Neffa. 2003. Combined effects of environment and grazing on vegetation structure in Argentine granite grasslands. Journal of Vegetation Science 14:223-232. https://doi.org/10.1111/j.1654-1103.2003.tb02147.x.

Cingolani, A. M., M. V. Vaieretti, M. A. Giorgis, M. Poca, P. A. Tecco, and D. E. Gurvich. 2014. Can livestock grazing maintain landscape diversity and stability in an ecosystem that evolved with wild herbivores? Perspectives in Plant Ecology, Evolution and Systematics 16:143-153. https://doi.org/10.1016/j.ppees.2014.04.002.

Cingolani, A. M., M. V. Vaieretti, M. A. Giorgis, N. La Torre, J. I. Whitworth-Hulse, and D. Renison. 2013. Can livestock and fires convert the sub-tropical mountain rangelands of central Argentina into a rocky desert? The Rangeland Journal 35:285-297. https://doi.org/10.1071/RJ12095.

Colladon, L. 2018. Anuario pluviométrico 1912-2017. Cuenca del Río San Antonio, Sistema del Río Suquía, Provincia de Córdoba. Córdoba, Argentina. Instituto Nacional del Agua y del Ambiente (INA) y Centro de Investigaciones de la Región Semiárida (CIRSA).

Colladon, L., and I. Pazos. 2014. Anuario pluviométrico 1992-2012. Cuenca del Río San Antonio, Sistema del Río Suquía, Provincia de Córdoba. Córdoba, Argentina. Instituto Nacional del Agua y del Ambiente (INA) y Centro de Investigaciones de la Región Semiárida (CIRSA).

Contreras, S., E. G. Jobbágy, P. E. Villagra, M. D. Nosetto, and J. Puigdefábregas. 2011. Remote sensing estimates of supplementary water consumption by arid ecosystems of central Argentina. Journal of Hydrology 397:10-22. https://doi.org/10.1016/j.jhydrol.2010.11.014.

Dasso, C. M., E. L. Piovano, A. I. Pasquini, F. E. Córdoba, K. L. Lecomte, L. Guerra, and V. A. Campodónico. 2014. Recursos hídricos superficiales. Pp. 1209-1231 en R. D. Martino y A. B. Guereschi (eds.). Relatorio del XIX Congreso Geológico Argentino: Geología y Recursos Naturales de la Provincia de Córdoba. Asociación Geológica Argentina.

Giorgis, M. A., A. M. Cingolani, P. A. Tecco, M. Cabido, M. Poca, and H. Von Wehrden. 2016. Testing alien plant distribution and habitat invasibility in mountain ecosystems: growth form matters. Biological Invasions 18:2017-2028. https://doi.org/10.1007/s10530-016-1148-8.

Giorgis, M. A., P. A. Tecco, A. M. Cingolani, D. Renison, P. Marcora, and V. Paiaro. 2011. Factors associated with woody alien species distribution in a newly invaded mountain system of central Argentina. Biological Invasions 13:1423-1434. https://doi.org/10.1007/s10530-010-9900-y.

Hacke, U. G., J. S. Sperry, J. K. Wheeler, and L. Castro. 2006. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology 26:689-701. https://doi.org/10.1093/treephys/26.6.689.

Jobbágy, E. G., A. M. Acosta, and M. D. Nosetto. 2013. Rendimiento hídrico en cuencas primarias bajo pastizales y plantaciones de pino de las sierras de Córdoba (Argentina). Ecología Austral 23:87-96. https://doi.org/10.25260/EA.13.23.2.0.1164.

Krakauer, N. Y., and M. Temimi. 2011. Stream recession curves and storage variability in small watersheds. Hydrology and Earth System Sciences 15:2377-2389. https://doi.org/10.5194/hess-15-2377-2011.

Landi, M. 2021. Mapa vegetación Pampa de Achala. Instituto de Diversidad y Ecología Animal (IDEA-CONICET-UNC).

Llanes, A. L., M. Poca, Y. G. Jiménez, G. Castellanos, B. M. Gómez, M. Marchese, N. B. Lana, M. Pascual, R. Albariño, M. P. Barral, J. Pascual, A. Clavijo, B. Díaz, N. Pessacg, and E. G. Jobbágy. 2022. ¿De dónde viene y a dónde va el agua de las ciudades? Base de datos integrada para 243 centros urbanos argentinos. Ecología Austral 32(3):1133-1149. https://doi.org/10.25260/EA.22.32.3.0.2028.

Messerli, B., D. Viviroli, and R. Weingartner. 2004. Mountains of the world: Vulnerable water towers for the 21st century. Ambio 33:29-34. https://doi.org/10.1007/0044-7447-33.sp13.29.

New, M., D. Lister, M. Hulme, and I. Makin. 2002. A high-resolution data set of surface climate over global land areas. Climate Research 21:1-25. https://doi.org/10.3354/cr021001.

Nosetto, M. D., E. G. Jobbágy, and J. M. Paruelo. 2005. Land‐use change and water losses: the case of grassland afforestation across a soil textural gradient in central Argentina. Global Change Biology 11:1101-1117. https://doi.org/10.1111/j.1365-2486.2005.00975.x.

Pascual, D., E. Pla, J. A. López-Bustins, J. Retana, and J. Terradas. 2015. Impacts of climate change on water resources in the Mediterranean Basin: a case study in Catalonia, Spain. Hydrological Sciences Journal 60:2132-2147. https://doi.org/10.1080/02626667.2014.947290.

Poca, M. 2016. Vegetación, suelos y dinámica hídrica de los ecosistemas de altura de las sierras de Córdoba, Argentina. Tesis Doctoral. Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba. Córdoba, Argentina.

Poca, M., A. M. Cingolani, D. E. Gurvich, V. Saur Palmieri, and G. Bertone. 2018a. Water storage dynamics across different types of vegetated patches in rocky highlands of central Argentina. Ecohydrology 11:e1981. https://doi.org/10.1002/eco.1981.

Poca, M., A. M. Cingolani, D. E. Gurvich, J. I. Whitworth-Hulse, and V. Saur Palmieri. 2018b. La degradación de los bosques de altura del centro de Argentina reduce su capacidad de almacenamiento de agua. Ecología Austral 28:235-248. https://doi.org/10.25260/EA.18.28.1.1.497.

Pucheta, E., E. Ferrero, L. Heil, and C. Schneider. 2004. Modelos de regresión para la estimación de la biomasa aérea en un pastizal de montaña de Pampa de Achala (Córdoba, Argentina). AgriScientia 21:23-30.

R Core Team. 2017. R: A Language and Environment for Statistical Computing. URL: R-project.org.

Renison, D. 2020. Acción Serrana 1. El bosque nativo vuelve a las Sierras de Córdoba. Acción Andina, Ecosistemas Argentinos, CONICET. URL: tinyurl.com/4azftsph.

Renison, D., I. Hensen, R. Suárez, A. M. Cingolani, P. Marcora, and M. A. Giorgis. 2010. Soil conservation in Polylepis mountain forests of Central Argentina: is livestock reducing our natural capital? Austral Ecology 35:435-443. https://doi.org/10.1111/j.1442-9993.2009.02055.x.

Renison, D., M. P. Chartier, M. Menghi, P. I. Marcora, T. C. Torres, M. Giorgis, and A. M. Cingolani. 2015. Spatial variation in tree demography associated to domestic herbivores and topography: Insights from a seeding and planting experiment. Forest Ecology and Management 335:139-146. https://doi.org/10.1016/j.foreco.2014.09.036.

Rico, A. F. 2020. Anuario pluviométrico 2017-2020. Cuenca del Río San Antonio, Sistema del Río Suquía, Provincia de Córdoba. Córdoba, Argentina. Instituto Nacional del Agua y del Ambiente (INA) y Centro de Investigaciones de la Región Semiárida (CIRSA).

Sánchez-Murillo, R., E. S. Brooks, W. J. Elliot, E. Gazel, and J. Boll. 2015. Baseflow recession analysis in the inland Pacific Northwest of the United States. Hydrogeology Journal 23:287-303. https://doi.org/10.1007/s10040-014-1191-4.

Seco, A. 2021. Las montañas como tanques de agua: variación altitudinal de la oferta hídrica de la cuenca del Río Anisacate, Córdoba. Trabajos finales en Ciencias Biológicas. Facultad de Ciencias Exactas Físicas y Naturales. URL: hdl.handle.net/11086/21333.

Smakhtin, V. U. 2001. Low flow hydrology: a review. Journal of Hydrology 240:147-186. https://doi.org/10.1016/S0022-1694(00)00340-1.

Thornthwaite, C. W. 1948. An approach toward a rational classification of climate. Geographical Review 38:55-94. https://doi.org/10.2307/210739.

Trancoso, R., S. Phinn, T. R. McVicar, J. R. Larsen, and C. A. McAlpine. 2017. Regional variation in streamflow drivers across a continental climatic gradient. Ecohydrol 10:e1816. https://doi.org/10.1002/eco.v10.310.1002/eco.1816.

USGS. 2022. U.S. Geological Survey (USGS) Earth Explorer. URL: earthexplorer.usgs.gov.

Viviroli, D., H. H. Dürr, B. Messerli, M. Meybeck, and R. Weingartner. 2007. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resources Research 43:W07447. https://doi.org/10.1029/2006WR005653.

Viviroli, D., M. Kummu, M. Meybeck, M. Kallio, and Y. Wada.2020. Increasing dependence of lowland populations on mountain water resources. Nature Sustainability 3:917-928. https://doi.org/10.1038/s41893-020-0559-9.

Weber, J. F., Á. N. Menéndez, and L. Tarrab. 2005. Distribución lateral de velocidades en cauces naturales. Ingeniería del Agua 12:1-14. URL: hdl.handle.net/2099/2504.

Whitworth‐Hulse, J. I., A. M. Cingolani, S. R. Zeballos, M. Poca, and D. E. Gurvich. 2016. Does grazing induce intraspecific trait variation in plants from a sub‐humid mountain ecosystem? Austral Ecology 41:745-755. https://doi.org/10.1111/aec.12361.

Whitworth-Hulse, J. I., P. N. Magliano, S. R. Zeballos, D. E. Gurvich, F. Spalazzi, and E. Kowaljow. 2020. Advantages of rainfall partitioning by the global invader Ligustrum lucidum over the dominant native Lithraea molleoides in a dry forest. Agricultural and Forest Meteorology 290:108013. https://doi.org/10.1016/j.agrformet.2020.108013.

Wittenberg, H. 2003. Effects of season and man‐made changes on baseflow and flow recession: case studies. Hydrological Processes 17:2113-2123. https://doi.org/10.1002/hyp.1324.

Wittenberg, H., and M. Sivapalan. 1999. Watershed groundwater balance estimation using streamflow recession analysis and baseflow separation. Journal of Hydrology 219:20-33. https://doi.org/10.1016/S0022-1694(99)00040-2.

Zhang, X., Y. Haijie, X. Fan, L. A. Bruijnzeel, Z. Cheng, and L. Baoyuan. 2022. Stability and variability of long-term streamflow and its components in watersheds under vegetation restoration on the Chinese Loess Plateau. Hydrological Processes 36:e14543. https://doi.org/10.1002/hyp.14543.

Vegetation-rock mosaics maximize water services in high-mountain areas in central Argentina

Published

2023-08-09

How to Cite

Cingolani, A. M., Poca, M., Whitworth-Hulse, J. I., Giorgis, M. A., Vaieretti, M. V., Herrero, M. L., Navarro-Ramos, S. E., & Renison, D. (2023). Vegetation-rock mosaics maximize water services in high-mountain areas in central Argentina. Ecología Austral, 33(3), 658–673. https://doi.org/10.25260/EA.23.33.3.0.2127