Seedling survival and growth of Podocarpus glomeratus (Podocarpaceae) along different altitudes and microsites in grassland ecosystems from the central Andes of Bolivia after four years

Authors

  • Ariel I. Ayma Romay Proyecto de Manejo y Restauración de Bosques en Independencia - Fundación para la Autogestión del Medio Ambiente (FUPAGEMA). Cochabamba, Bolivia.
  • Pedro Lovera Proyecto de Manejo y Restauración de Bosques en Independencia - Fundación para la Autogestión del Medio Ambiente (FUPAGEMA). Cochabamba, Bolivia. Gobierno Autónomo Municipal de Independencia. Cochabamba, Bolivia.
  • Gladys Soto-Rojas Proyecto de Manejo y Restauración de Bosques en Independencia - Fundación para la Autogestión del Medio Ambiente (FUPAGEMA). Cochabamba, Bolivia. Universidad Mayor de San Simón, Escuela de Ciencias Forestales. Cochabamba, Bolivia.

DOI:

https://doi.org/10.25260/EA.17.27.1.0.215

Abstract

Altitude and microsite are key factors for the establishment of seedlings in mountain ecosystems. In this study, we evaluated how seedling survival and growth of Podocarpus glomeratus, a native tree vulnerable to extinction, varied across different altitudes and microsites. As part of a four-year reforestation program, 150 seedlings were planted in 15 experimental plots along an altitudinal gradient of five levels (2747, 3005, 3300, 3590 and 3850 m a.s.l.) and three repetitions by altitude (nested plots) in a grassland ecosystems from the community of Pajchanti (Cochabamba, Bolivia). Plant survival, growth and microsite around each seedling, such as slope and ground cover (rock outcrops, grasses, shrubs, mosses and herbs) were measured three times during the reforestation program. Generalized linear mixed models (GLMM) and Tukey tests were used in order to evaluate the influence of altitude on seedling survival and growth (including nested plots as random factor). The influence of each component biotic or abiotic in the microsites on the survival and growth was analyzed also with GLMM, for each altitude separately. Thus, we avoided confusing effect of altitude and microsite. Seedlings survival was significantly greater at the intermediate altitude and lower at both altitudinal extremes, but seedlings growth was greater at the lower altitude range (from 2700 to 3300 m a.s.l.), while smaller at higher altitudes. Seedlings survival was not influenced by abiotic or biotic components of the microsite. However, high shrub cover was related to higher seedlings growth at the lowest altitude. High rock outcrops cover had a negative effect on growth in the intermediate altitude, while more rock outcrops and higher slope percentage had positive effect on the growth at a higher altitude (3590 m a.s.l.). Reforestation of P. glomeratus in grassland ecosystems should be carried out at 2700 to 3300 m a.s.l. Nonetheless, shrubs, rock outcrops and slope of the microsite influenced the establishment of the seedlings, depending on cover percentage and interactions with the altitude. These microsite components must be managed in future reforestations.

References

Anthelme, F., L. Cavieres, and O. Dangles. 2014a. Facilitation among plants in alpine environments in the face of climate change. Front Plant Sci 387(5):1-15.

Anthelme, F., L. Gómez-Aparicio, and R. Montúfar. 2014b. Nurse-based restoration of degraded tropical forests with tussock grasses: experimental support from the Andean cloud forest. J Appl Ecol 51:1534-1543.

Ayma-Romay, A. I., and E. S. Sanzetenea. 2008. Variaciones fenológicas de especies de Podocarpaceae en estación seca de los Yungas (Cochabamba, Bolivia). Ecología en Bolivia 43(1):16-28.

Ayma-Romay, A. I., E. Padilla, and E. Calani. 2007. Estructura, composición y regeneración de un bosque de neblina: sugerencias silviculturales para Podocarpus glomeratus (Podocarpaceae) en la comunidad de Pajchanti (Cochabamba, Bolivia). Revista Boliviana de Ecología y Conservación Ambiental 21:27-42.

Ayma-Romay, A. I., and E. Padilla. 2009. Efecto de la tala de Podocarpus glomeratus (Podocarpaceae) sobre la estructura de un bosque de neblina en los Andes (Cochabamba, Bolivia). Rev Peru Biol 16(1):73-79.

Báez, S., F. Cuesta, Y. Cáceres, C. Arnillas, and R. Vásquez. 2011. Síntesis del conocimiento de los efectos del cambio climático en la biodiversidad de los Andes tropicales. CONDESAN, Lima.

BENISTON, M. 2003. Climatic change in mountain regions: A review of possible impacts. Climatic Change 59:5-31.

Bergin, D., and M. Kimberley. 2014. Factors influencing natural regeneration of totara (Podocarpus totara D. Don) on grazed hill country grassland in Northland, New Zealand. New Zeal J For Sci 44:1-13.

Bertness, M. D., and R. Callaway. 1994. Positive interactions in communities. Trends Ecol Evol 9:191-193.

Cavieres, L., F. Rada, A. Azócar, C. García-Núñez, and H. Cabrera. 2000. Gas exchange and low temperature resistance in two tropical high mountain tree species from the Venezuelan Andes. Acta Oecologica 21(3):203-211

Cernusak, L. A., H. Adie, P. Bellingham, E. Biffin, T. Brodribb, D. Coomes; et al. 2011. Podocarpaceae in tropical forests: a synthesis. Pp. 189-195 en: B. Turner and L. Cernusak (eds.). Ecology of the Podocarpaceae in Tropical Forests. Smithsonian Institution Scholarly Press. Washington.

Cierjacks, A., K. Wesche, and I. Hensen. 2007. Potential lateral expansion of Polylepis forest fragments in central Ecuador. Forest Ecol Manag 242:477-486.

Dalling, J., P. Barkan, P. J. Bellingham, J. Healey, E. Tanner, and J. Murillo. 2011. Ecology and distribution of neotropical Podocarpaceae. Pp. 43 -56 en: B. Turner and L. Cernusak (eds.). Ecology of the Podocarpaceae in Tropical Forests. Smithsonian Institution Scholarly Press, Washington.

Doust, S. J., P. Erskine, and D. Lamb. 2006. Direct seeding to restore rainforest species: microsite effects on the early establishment and growth of rainforest tree seedlings on degraded land in the wet tropics of Australia. Forest Ecol Manag 234:333-343.

Fjeldså, J., and M. Kessler. 2004. Conservación de la biodiversidad de los bosques de Polylepis de las tierras altas de Bolivia. Editorial FAN, Santa Cruz.

Grubb, P. J. 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52:107-145.

Hothorn, T., F. Bretz, and P. Westfall. 2008. Simultaneous inference in general parametric models. Biometrical Journal 50:346-363.

Körner, C., and J. Paulsen. 2004. A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713-732.

Marcora, P., D. Renison, A. I. País-Bosch, M. R. Cabido, and P. A. Tecco. 2013. The effect of altitude and grazing on seedling establishment of woody species in central Argentina. Forest Ecol Manag 291:300-307.

Maestre, F. T., R. Callaway, F. Valladares, and C. Lortie. 2009. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199-205.

Navarro, G. 2005. Provincia biogeográfica de los yungas. Pp. 279-339 en: G. Navarro and M. Maldonado (eds.). Geografía ecológica de Bolivia. Centro de Ecología y Difusión Simón I. Patiño, Santa Cruz.

Padilla, F. M., and F. Pugnaire. 2006. The role of nurse plants in the restoration of degraded environments. Front Ecol Environ 4:196-202.

Peters, E., C. Martorell, and E. Ezcurra. 2008. Nurse rocks are more important than nurse plants in determining the distribution and establishment of Globose cacti (Mammillaria) in the Tehuacán Valley, Mexico. J Arid Environ 72:593-601.

Pinheiro, J., D. Bates, S. Debroy, and D. Sarkar. 2016. nlme: linear and nonlinear mixed effects models. URL: http://CRAN.R-project.org/package=nlme.

R Core Team. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org.

Renison, D., I. Hensen, and A. Cingolani. 2004. Anthropogenic soil degradation affects seed viability in Polylepis australis mountain forests of central Argentina. Forest Ecol Manag 196:327-333.

Rovere, A., and G. Calabrese. 2011. Diversidad de musgos en ambientes degradados sujetos a restauración en el Parque Nacional Lago Puelo. Rev Chil Hist Nat 84:571-580.

Simpson, B. 1986. Speciation and specialization of Polylepis in the Andes. Pp. 304 -316 en: F. Vuillemier and M. Monasterio (eds.). High altitude tropical biogeography. Oxford University Press, Nueva York.

Smith, W., M. Germino, D. Johnson, and K. Reinhardt. 2009. The altitude of alpine treeline: A bellwether of climate change effects. Bot. Rev 75:163-190.

Venables, W., and B. Ripley. 2002. Modern applied statistics with S. Springer, New York.

Zamora, R., P. García-Fayos, and L. Gómez-Aparicio. 2004. Las interacciones planta-planta y planta animal en el contexto de la sucesión ecológica. Pp. 371-393 en: F. Valladares (ed.). Ecología del bosque mediterráneo en un mundo cambiante. EGRAF, Madrid.

Sobrevivencia y crecimiento de plántulas reforestadas de Podocarpus glomeratus (Podocarpaceae) en diferentes altitudes y micrositios en ecosistemas de pastizales de los Andes bolivianos después de cuatro años

Published

2017-04-07

How to Cite

Ayma Romay, A. I., Lovera, P., & Soto-Rojas, G. (2017). Seedling survival and growth of Podocarpus glomeratus (Podocarpaceae) along different altitudes and microsites in grassland ecosystems from the central Andes of Bolivia after four years. Ecología Austral, 27(1), 063–071. https://doi.org/10.25260/EA.17.27.1.0.215