Temperature effect on the initial life stages of Trachycephalus typhonius and Scinax nasicus (Anura: Hylidae).

Authors

  • Valeria I. Gómez Centro de Ecología Aplicada del Litoral (CECOAL-CONICET). Facultad de Ciencias Exactas y Naturales y Agrimensura (FACENA-UNNE). Corrientes, Argentina

DOI:

https://doi.org/10.25260/EA.23.33.1.0.2150

Keywords:

environmental stress, survival, growth, development, tadpoles

Abstract

In ectothermic species, temperature is one of the most important environmental factors affecting growth, development and survival. In species with complex life cycles, such as amphibians, differential survival can lead to patterns of complex variability affecting size and structure of the population. The aim of this study was to evaluate in experimental conditions, the effect of temperature on survival, growth and development rate in tadpoles of two species of anuran Trachycephalus typhonius and Scinax nasicus. Twenty larvae of each species were reared in each of five treatments: 26, 28, 30, 32 y 34 °C. The results show that the larvae of S. nasicus are more sensitive to the effect of temperature, showing a lower survival compared to the larvae of T. typhonius. In turn, survival decreases significantly with increasing temperature, individuals exposed to 34 °C had the lowest survival rate. Temperature did not significantly affect the growth and development rates of T. typhonius tadpole, although there is a tendency to increase these parameters in the intermediate temperatures, finding the lowest values in the extremes. In contrast, S. nasicus significantly increased growth and development rates when raised at high temperatures. The results showed that high temperatures can affect the growth, development and survival of anuran larvae. However, the results also showed that these responses vary between species, and some species could be more affected by temperature.

References

Acosta, N. R. 2010. Plasticidad fenotípica en la metamorfosis de larvas de Rhinella arenarum

del Valle del Lerma, Salta. Tesis doctoral, Universidad Nacional de La Plata, Buenos Aires. Argentina. Pp. 144.

Altwegg, R., A. Roulin, M. Kestenholz, and L. Jenni. 2003. Variation and covariation in survival, dispersal, and population size in barn owls Tyto alba. Journal of Animal Ecology 72:391-399. https://doi.org/10.1046/j.1365-2656.2003.00706.x.

Álvarez, D., and A. G. Nicieza. 2002. Effects of temperature and food quality on anuran larval growth and metamorphosis. Functional Ecology 16:640-648. https://doi.org/10.1046/j.1365-2435.2002.00658.x.

Beukema, J. J., and R. Dekker. 2005. Decline of recruitment success in cockles and other bivalves in the Wadden Sea: Possible role of climate change, predation on postlarvae and fisheries. Marine Ecology Progress Series 287:149-167. https://doi.org/10.3354/meps287149.

Charnov, E. L. 2004. Size and temperature in the evolution of fish life histories. Integrative and Comparative Biology 44:494-497. https://doi.org/10.1093/icb/44.6.494.

Coulson, T. E., A. Catchpole, S. D. Albon, B. J. T. Morgan, J. M. Pemberton, T. H. Clutton-Brock, M. J. Crawley, and B. T. Grenfell. 2001. Age, sex, density, winter weather, and population crashes in Soay sheep. Science 292:1528-1531. https://doi.org/10.1126/science.292.5521.1528.

De Sousa, V. T. T., F. Nomura, D. C. Rossa-Feres, G. V. Andrade, T. L. Pezzuti, R. Wassersur, and M. D. Venesky. 2015. Differential effects of temperature on the feeding kinematics of the tadpoles of two sympatric anuran species. Journal of Experimental Zoology 9999A:1-10. https://doi.org/10.1111/jzo.12208.

Fernandez-Beaskoetxea, S., L. M. Carrascal, A. Fernández-Lora, M. C. Fisher, and J. Bosch. 2015. Short term minimum water temperatures determine levels of infection by the amphibians chytrid fungus in Alytes obstetricans tadpoles. PloS ONE 10:e0120237. https://doi.org/10.1371/journal.pone.0120237.

Foster, J. T., E. J. Tweed, R. J. Camp, B. L. Woodworth, C. D. Adler, and T. Telfer. 2004. Long-term population changes of native and introduced birds in the Alaka'i Swamp, Kaua'i. Conservation Biology 18:716-725. https://doi.org/10.1111/j.1523-1739.2004.00030.x.

Frost, D. R. 2021. Amphibian Species of the World: An Online Reference. Version 6.1. URL: research.amnh.org/herpetology/amphibia/index.html.

Goldstein, J. A., K. von Seckendorr Hoff, and S. D. Hillyard. 2017. The effect of temperature on development and behaviour of relict leopard frog tadpoles. Conservation Physiology 5: cow075. https://doi.org/10.1093/conphys/cow075.

Gomez-Mestre, I., and D. R. Buchholz. 2006. Developmental plasticity mirrors differences among taxa in spadefoot toads linking plasticity and diversity. Proceedings of the National Academy of Sciences of the United States of America 103:19021-19026. https://doi.org/10.1073/pnas.0603562103.

Gosner, K. L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183-190.

Govindarajulu, P. P., and B. R. Anholt. 2006. Interaction between biotic and abiotic factors determines tadpoles survival rate under natural condictions. Écoscience 13:413-421. https://doi.org/10.2980/i1195-6860-13-3-413.1.

Hammer, O., D. T. A. Harper, and P. D. Ryan. 2001. PAST: Paleontological statistical software package for education and data analysis. Palaeontologia Electronica 4(1):9.

Hellriegel, B. 2000. Single- or multistage regulation in complex life cycles: Does it make a difference? Oikos 88:239-249. https://doi.org/10.1034/j.1600-0706.2000.880202.x.

Hochachka, P. W., and G. N. Somero. 2002. Biochemical Adaptation. Mechanism and process in physiological evolution. First edition. Oxford University Press. New York, USA.

Huey, R. B., and R. D. Stevenson. 1979. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. American Zoology 19:357-366. https://doi.org/10.1093/icb/19.1.357.

Jara, F. G., L. L. Thurman, P. O. Montiglio, A. Sih, and T. S. García. 2019. Warming-induced shifts in amphibian phenology and behavior lead to altered predator-prey dynamics. Oecologia 189:803-813. https://doi.org/10.1007/s00442-019-04360-w.

Kehr, A. I. 1987. Crecimiento individual en larvas de Hyla pulchella pulchella y Bufo fernandezae en condiciones controladas de coexistencia y densidad (Amphibia: Anura). Cuadernos de Herpetología 3:1-6.

Kehr, A. I., and M. I. Duré. 1995. Descripción de la larva de Scinax nasica (Cope, 1862) (Anura, Hylidae). Facena 11:99-103.

Kiesecker, J. M., L. K. Belden, K. Shea, and M. J. Rubbo. 2004. Amphibian decline and emerging disease: what can sick frogs teach us about new and resurgent diseases in human populations and other species of wildlife? American Scientist 92:138-147. https://doi.org/10.1511/2004.2.138.

Lambert, M. R., M. S. Smylie, A. J. Roman, L. K. Freidenburg, and D. K. Skelly. 2018. Sexual and somatic development of wood frog tadpoles along a thermal gradient. Journal of Experimental Zoology Part A Ecological and Integrative Physiology 2018:1-8. https://doi.org/10.1002/jez.2172.

Lima, M., N. C. Stenseth, H. Leirs, and F. M. Jaksic. 2003. Population dynamics of small mammals in semi-arid regions: A comparative study of demographic variability in two rodent species. Proceedings of the Royal Society of London, Series B-Biological Sciences 270:1997-2007. https://doi.org/10.1098/rspb.2003.2448.

Liu, L., C. Li, B. N. Li, H. F. Xu, and Y. Z. Wang. 2006. Effects of water temperature on tadpole phenotypic plasticity in Bufo gargarizans (Anura: Bufonidae). Sichuan Journal of Zoology 25:214-217.

Marsh, D. M. 2001. Fluctuations in amphibian populations: A meta-analysis. Biological Conservation 101:327-335. https://doi.org/10.1016/S0006-3207(01)00076-3.

McCormick, M. I., and A. S. Hoey. 2004. Larval growth history determines juvenile growth and survival in a tropical marine fish. Oikos 106:225-242. https://doi.org/10.1111/j.0030-1299.2004.13131.x.

McMenamin, S. K., E. A. Hadly, and C. K. Wright. 2008. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proceeding of the Natural Academy of Science 105:16988-16993. https://doi.org/10.1073/pnas.0809090105.

Meyer, A. H., B. R. Schmidt, and K. Grossenbacher. 1998. Analysis of three amphibian populations with quarter-century long time- series. Proceedings of the Royal Society of London, Series B-Biological Sciences 265:523-528. https://doi.org/10.1098/rspb.1998.0326.

Moore, J. A. 1940. Adaptative differences in the egg membranes of frogs. American Naturalist 74:89-93. https://doi.org/10.1086/280874.

Nie, H. Y., J. K. Liu, J. P. Su, Y. M. Zhang, and H. H. Zhang. 2007. Progress in the study of animal life history evolution. Acta Ecologica Sinica 27:4267-4277.

Pechmann, J. H. K., D. E. Scott, R. D. Semlitsch, J. P. Caldwell, L. J. Vitt, and J. W. Gibbons. 1991. Declining amphibian populations: The problem of separating human impacts from natural fluctuations. Science 253:892-895. https://doi.org/10.1126/science.253.5022.892.

Ren, C., Y. Teng, Y. Shen, Q. Yao, and H. Wang. 2021. Altered temperature affect body condition and endochondral ossification in Bufo gargarizans tadpoles. Journal of Thermal Biology 99:103020. https://doi.org/10.1016/j.jtherbio.2021.103020.

Rohr, J. R., and T. R. Raffel. 2010. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. Proceeding of the Natural Academy of Science 107:8269-8274. https://doi.org/10.1073/pnas.0912883107.

Saether, B. E., J. Tufto, S. Engen, K. Jerstad, O. W. Rostad, and J. E. Skatan. 2000. Population dynamical consequences of climate change for a small temperate songbird. Science 287:854-856. https//doi.org/10.1126/science.287.5454.854.

Savage, R. M. 1961. The ecology and life history of the common frog (Rana temporaria temporaria). First edition. Pitman and Sons, Ltd. London, UK. https://doi.org/10.5962/bhl.title.6538.

Stearns, S. C. 1992. The evolution of life histories. First edition. Oxford University Press, New York, USA.

Zweifel, R. G. 1964. Life history of Phrynohyas venulose (Salienta: Hylidae) in Panamá. Copeia 1:201-208. https://doi.org/10.2307/1440851.

Temperature effect on the initial life stages of Trachycephalus typhonius and Scinax nasicus (Anura: Hylidae)

Published

2023-01-25

How to Cite

Gómez, V. I. (2023). Temperature effect on the initial life stages of Trachycephalus typhonius and Scinax nasicus (Anura: Hylidae) . Ecología Austral, 33(1), 089–094. https://doi.org/10.25260/EA.23.33.1.0.2150