Influence of climate on the composition, diversity, biomass and functional traits of tree vegetation of two Andean montane tropical forests

Authors

  • Hugo Cedillo Grupo de Ecología Forestal Agroecosistemas y Silvopasturas en Sistemas Ganaderos, Facultad de Ciencias Agropecuarias, Universidad de Cuenca. Ecuador. Universidad Politécnica de Madrid, Departamento de Ingeniería y Gestión Forestal y Ambiental. España https://orcid.org/0000-0001-5589-0926
  • Luis G. García-Montero Universidad Politécnica de Madrid, Departamento de Ingeniería y Gestión Forestal y Ambiental. España https://orcid.org/0000-0002-3387-4164
  • Santiago Toledo Grupo de Ecología Forestal Agroecosistemas y Silvopasturas en Sistemas Ganaderos, Facultad de Ciencias Agropecuarias, Universidad de Cuenca. Ecuador
  • Pablo Mosquera Grupo de Ecología Forestal Agroecosistemas y Silvopasturas en Sistemas Ganaderos, Facultad de Ciencias Agropecuarias, Universidad de Cuenca. Ecuador
  • Paola Benalcázar Grupo de Ecología Forestal Agroecosistemas y Silvopasturas en Sistemas Ganaderos, Facultad de Ciencias Agropecuarias, Universidad de Cuenca. Ecuador
  • Pedro Zea Grupo de Ecología Forestal Agroecosistemas y Silvopasturas en Sistemas Ganaderos, Facultad de Ciencias Agropecuarias, Universidad de Cuenca. Ecuador https://orcid.org/0000-0002-2225-7881
  • Oswaldo Jadán Grupo de Ecología Forestal Agroecosistemas y Silvopasturas en Sistemas Ganaderos, Facultad de Ciencias Agropecuarias, Universidad de Cuenca. Ecuador. Universidad Rey Juan Carlos, Departamento de Biología, Geología, Física y Química Inorgánica. España https://orcid.org/0000-0002-7865-2418

DOI:

https://doi.org/10.25260/EA.23.33.3.0.2152

Keywords:

Azuay, montane forest, spatial correlation, remnant forests, precipitation, temperature

Abstract

In the western Andes of southern Ecuador, remnants of Andean montane tropical forests (BTMA) deserve to be studied ecologically for their value and conservation purposes. This research aimed to describe the difference in taxonomic and functional parameters of arboreal vegetation and explain its relationship with predictor variables. Predictors of climate, soils and spatial correlation were used to explain the difference in composition, diversity, tree density, biomass and functional traits between two types of BTMA: evergreen montane forest (BSM) and highline evergreen montane forest (BSMA). The difference in species composition was described with ANOSIM and NMDS. Differences in diversity, density, biomass and functional traits were evaluated using mean tests with Student t. The relationship between species composition and predictor variables was analyzed with variance partitioning (VARPART), while tree density, above-ground biomass, and functional traits were analyzed with generalized linear models (MLG). The composition was different between the two types and was explained by climate and spatial correlation. Tree density and above-ground biomass were higher in the BSMA. The weighted average of the leaf area (AF) was higher in BSM, while the specific leaf area (AFE) was higher in the BSMA. The mean annual precipitation (PMA) and mean annual temperature (TMA) explained the composition of the species. The density was explained by the TMA, apparent density (DA) and MO. The aboveground biomass was explained by TMA. The AF was explained by the TMA and DA and the AFE was explained by the PMA. We concluded that the parameters of the vegetation vary in small altitudinal gradients, where there is environmental heterogeneity conditioned by the climate and certain soil variables.

References

Adler, P. B., R. Salguero-Gómez, A. Compagnoni, J. S. Hsu, J. Ray-Mukherjee, C. Mbeau-Ache, and M. Franco. 2014. Functional traits explain variation in plant life history strategies. Proc Natl Acad Sci USA 111:740-745. https://doi.org/10.1073/pnas.1315179111.

Aguilar, L. C., A. Piepenstock, and W. Burgoa. 2009. Especies nativas kewiña (Polylepis sp.) y kiswara (Buddleja sp.) en barreras vivas: una alternativa para reducir la degradación de suelos y mejorar las condiciones de vida en la zona altoandina de Bolivia. Acta Nova 4:425-38.

Ali, A., E.-R. Yan, S. X. Chang, J.-Y Cheng, and X.-Y Liu. 2017. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Science of the Total Environment 574:654-62. https://doi.org/10.1016/j.scitotenv.2016.09.022.

Arellano, G., V. Cala, A. Fuentes, L. Cayola, P. Jorgensen, and M. Macía. 2016 A standard protocol for woody plant inventories and soil characterisation using temporary 0.1-ha plots in tropical forests. Journal of Tropical Forest Science 28(4):508-516.

Báez, S., A. Malizia, J. Carilla, C. Blundo, M. Aguilar, N. Aguirre, Z. Aquirre, E. Álvarez, F. Cuesta, and Á. Duque. 2015. Large-scale patterns of turnover and basal area change in Andean forests. PloS ONE 10:e0126594. https://doi.org/10.1371/journal.pone.0126594.

Barthlott, W., J. Mutke, D. Rafiqpoor, G. Kier, and H, Kreft. 2005. Global centers of vascular plant diversity. Acta Hist Leopoldina 92:61-83. https://doi.org/10.1073/pnas.0608361104.

Berry, P. E., M. Guariguata, and G. Kattan. 2002. Diversidad y endemismo en los bosques neotropicales de bajura. Ecología y Conservación de Bosques Neotropicales 1:83-96.

Casanoves, F., L. Pla, and J. Di Rienzo (eds.). 2011. Valoración y análisis de la diversidad funcional y su relación con los servicios ecosistémicos. Centro Agron6mico Tropical de Investigación y Enseñanza, CATIE. Turrialba, Costa Rica.

Casanoves, F., L. Pla, J. A. Di Rienzo, and S. Díaz. 2011. FDiversity: a software package for the integrated analysis of functional diversity. Methods in Ecology and Evolution 1:233-7. https://doi.org/10.1111/j.2041-210X.2010.00082.x.

Castellanos‐Castro, C., and A. C. Newton. 2015. Environmental heterogeneity influences successional trajectories in Colombian seasonally dry tropical forests. Biotropica 47:660-671. https://doi.org/10.1111/btp.12245.

Chain-Guadarrama, A., B. Finegan, S. Vilchez, and F. Casanoves. 2012. Determinants of rain-forest floristic variation on an altitudinal gradient in southern Costa Rica. Journal of Tropical Ecology 28:463-481. https://doi.org/10.1017/S0266467412000521.

Chase, J. M. 2014. Spatial scale resolves the niche versus neutral theory debate. Journal of Vegetation Science 25:319-22. https://doi:10.1111/jvs.12159.

Chave, J., M. Réjou‐Méchain, A. Búrquez, E. Chidumayo, M. S. Colgan, W. B. Delitti, et al. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol 20:3177-90. https://doi.org/10.1111/gcb.12629.

Cornelissen, J., S. Lavorel, E. Garnier, S. Díaz, N. Buchmann, D. Gurvich, P. Reich, H. Ter Steege, H. Morgan, and M. Van Der Heijden. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51:335-380. https://doi.org/10.1071/BT02124.

de la Cruz-Amo, L., G. Bañares-de-Dios, V. Cala, Í, Granzow-de la Cerda, C. I. Espinosa, A. Ledo, N. Salinas, M. J. Macía, and L. Cayuela. 2020. Trade-Offs Among Aboveground, Belowground, and Soil Organic Carbon Stocks Along Altitudinal Gradients in Andean Tropical Montane Forests. Front Plant Sci 11:106. https://doi.org/10.3389/fpls.2020.00106.

Di Rienzo, J. A., F. Casanoves, L. Pla, S. Vílchez, and M. J. Di Rienzo. 2010. Qeco-Quantitative ecology software: A collaborative approach. Lat Am J Conserv 1:73-5.

Di Rienzo, J. A., R. Macchiavelli, and F. Casanoves. 2017. Modelos lineales generalizados mixtos aplicaciones en InfoStat, Edición especial. Córdoba, Argentina.

Duque, A., P. R. Stevenson, and K. J. Feeley. 2015. Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proc Natl Acad Sci USA 112:10744-9. https://doi.org/10.1073/pnas.1506570112.

Feeley, K. J., M. R. Silman, M. B. Bush, W. Farfan, K. G. Cabrera, Y. Malhi, P. Meir, N. S. Revilla, M. N. R. Quisiyupanqui, and S. Saatchi. 2011. Upslope migration of Andean trees. J Biogeogr 38:783-91. https://doi.org/10.1111/j.1365-2699.2010.02444.x.

Finegan, B. 1992. The management potential of neotropical secondary lowland rain forest. For Ecol Manag 47:295-321. https://doi.org/10.1016/0378-1127(92)90281-D.

Finegan, B., M. Peña‐Claros, A. de Oliveira, N. Ascarrunz, M. S. Bret‐Harte, G. Carreño‐Rocabado, et al. 2015. Does functional trait diversity predict above‐ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J Ecol 103:191-201. https://doi.org/10.1111/1365-2745.12346.

Girardin, C. A. J., W. Farfan-Ríos, K. García, K. J. Feeley, P. M. Jørgensen, A. A. Murakami, L. Cayola-Pérez, et al. 2014. Spatial patterns of above-ground structure, biomass and composition in a network of six Andean elevation transects. Plant Ecol Divers 7:161-71. https://doi.org/10.1080/17550874.2013.820806.

Gleason, H. A. 1939. The individualistic concept of the plant association. American Midland Naturalist 21(1):92-110. https://doi.org/10.2307/2420377.

Grime, J. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology 86:902-910. https://doi.org/10.1046/j.1365-2745.1998.00306.x.

Holm-Nielsen, L., and G. Harling. 1986. Flora of Ecuador. Department of Systematic Botany, University of Göteborg, Section for Botany, Riksmuseum: Amsterdam, The Netherlands. Pp. 1-92.

Homeier, J., S. W. Breckle, S. Günter, R. T. Rollenbeck, and C. Leuschner. 2010. Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species‐rich Ecuadorian montane rain forest. Biotropica 42:140-8. https://doi.org/10.1111/j.1744-7429.2009.00547.x.

Homeier, J., T. Seeler, K. Pierick, and C. Leuschner. 2021. Leaf trait variation in species-rich tropical Andean forests. Scientific Reports 11:1-11. https://doi.org/10.1038/s41598-021-89190-8.

Hsieh, T., K. Ma, and A. Chao. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods in Ecology and Evolution 7:1451-1456. https://doi.org/10.1111/2041-210X.12613.

Jadán, O., H. Cedillo, W. Tapay, I. Pangol, W. Quizphe, and O. Cabrera. 2022. Successional forests stages influence the composition and diversity of vascular epiphytes communities from Andean Montane Forests. Ecological Indicators 143:109366.

Jadán, O., H. Cedillo, P. Zea, P. Quichimbo, Á. Peralta, and C. Vaca. 2016. Relación entre deforestación y variables topográficas en un contexto agrícola ganadero, cantón Cuenca. Bosques Latitud Cero 6

Jadán, O., D. A. Donoso, H. Cedillo, F. Bermúdez, and O. Cabrera. 2021. Floristic groups, and changes in diversity and structure of trees, in tropical montane forests in the Southern Andes of Ecuador. Diversity 13:400. https://doi.org/10.3390/d13090400.

Jadán, O., C. Toledo, B. Tepán, H. Cedillo, Á. Peralta, P. Zea, P. Castro, and C. Vaca. 2017. Comunidades forestales en bosques secundarios alto-andinos (Azuay, Ecuador). Bosque (Valdivia) 38:141-54. https://doi.org/10.4067/S0717-92002017000100015.

Jorgensen, P. M., and S. León-Yánez. 1999. Catálogo de las plantas vasculares del Ecuador. Missouri Botanical Garden.

Kessler, M., and J. Kluge. 2008. The tropical mountain forest: patterns and processes in a biodiversity hotspot. Pp. 35-50 en S. R. Gradstein, J. Homeier and D. Gansert (eds.). Biodiversity and Ecology Series, Göttingen: Gottingen Centre for Biodiversity and Ecology. https://doi.org/10.17875/gup2008-702.

Küebler, D., P. Hildebrandt, S. Günter, B. Stimm, M. Weber, R. Mosandl, J. Muñoz, O. Cabrera, N. Aguirre, J. Zeilinger, and B. Silva. 2016. Assessing the importance of topographic variables for the spatial distribution of tree species in a tropical mountain forest. Erdkunde 70:19-47. https://doi.org/10.3112/erdkunde.2016.01.03.

Kuhn, M. 2015. Caret: classification and regression training. Astrophysics Source Code Library, ascl:1505.003.

MAE. 2013. Sistema de clasificación de los ecosistemas del Ecuador continental. Pp. 40-45 en Ministerio del Ambiente del Ecuador, Quito, Ecuador.

Malizia, A., C. Blundo, J. Carilla, O. Osinaga Acosta, F. Cuesta, A. Duque, N. Aguirre, Z. Aguirre, M. Ataroff, and S. Báez. 2020. Elevation and latitude drives structure and tree species composition in Andean forests: Results from a large-scale plot network. PloS ONE 15:e0231553. https://doi.org/10.1371/journal.pone.0231553.

Martorell, C., and R. P. Freckleton. 2014. Testing the roles of competition, facilitation and stochasticity on community structure in a species‐rich assemblage. Journal of Ecology 102:74-85. https://doi.org/10.1111/1365-2745.12173.

Moser, G., C. Leuschner, D. Hertel, S. Graefe, N. Soethe, and S. Iost. 2011. Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Glob Chang Biol 17:2211-26. https://doi.org/10.1111/j.1365-2486.2010.02367.x.

Muenchow, J., P. Schratz, and A. Brenning. 2017. RQGIS: Integrating R with QGIS for Statistical Geocomputing. R Journal 9. https://doi.org/10.32614/RJ-2017-067.

Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853-8. https://doi.org/10.1038/35002501.

Paoli, G. D., L. M. Curran, and J. W. F. Slik. 2008. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155:287-99. https://doi.org/10.1007/s00442-007-0906-9.

Pérez-Escobar, O. A., A. Zizka, M. A. Bermúdez, A. S. Meseguer, F. L. Condamine, C. Hoorn, H. Hooghiemstra, Y. Pu, D. Bogarín, and L. M. Boschman. 2022. The Andes through time: evolution and distribution of Andean floras. Trends in Plant Science 27(4):364-378. https://doi.org/10.1016/j.tplants.2021.09.010.

Swenson, N. G., and B. J. Enquist. 2008. The relationship between stem and branch wood specific gravity and the ability of each measure to predict leaf area. Am J Bot 95:516-9. https://doi.org/10.3732/ajb.95.4.516.

Tapia-Armijos, M. F., J. Homeier, C. I. Espinosa, C. Leuschner, and M. de la Cruz. 2015. Deforestation and forest fragmentation in South Ecuador since the 1970-losing a hotspot of biodiversity. PLoS ONE 10:e0133701. https://doi.org/10.1371/journal.pone.0133701.

Ter Steege, H., N. Pitman, D. Sabatier, H. Castellanos, P. Van Der Hout, D. C. Daly, et al. 2003. A spatial model of tree α-diversity and tree density for the Amazon. Biodivers Conserv 12:2255-77. https://doi.org/10.1023/A:1024593414624.

Thuiller, W., N. Gassó, J. Pino, and M. Vila. 2012. Ecological niche and species traits: key drivers of regional plant invader assemblages. Biological Invasions 14:1963-80. https://doi.org/10.1007/s10530-012-0206-0.

Unger, M., J. Homeier, and C. Leuschner. 2012. Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes. Oecologia 170:263-74. https://doi.org/10.1007/s00442-012-2295-y.

Veintimilla, D., M. A. Ngo Bieng, D. Delgado, M. S. Vilchez, N. Zamora, and B. Finegan. 2019. Drivers of tropical rainforest composition and alpha diversity patterns over a 2520 m altitudinal gradient. Ecol Evol 9:5720-30. https://doi.org/10.1002/ece3.5155.

Veintimilla Ramos, D. A. 2013 Identificación y caracterización de tipos de bosque tropical sobre un gradiente altitudinal en Costa Rica: el caso "Caribe-Villa Mills". Tesis de Magister Scientiae en Manejo y Conservación de Bosques Tropicales y Biodiversidad. Turrialba, Costa Rica.

Yepes, A. P., J. I. del Valle, S. L. Jaramillo, and S. A. Orrego. 2010. Recuperación estructural en bosques sucesionales andinos de Porce (Antioquia, Colombia). Rev Biol Trop 58:427-45. https://doi.org/10.15517/RBT.V58I1.5220.

Influence of climate on the composition, diversity, biomass and functional traits of tree vegetation of two Andean montane tropical forests

Published

2023-09-25

How to Cite

Cedillo, H., García-Montero, L. G., Toledo, S., Mosquera, P., Benalcázar, P., Zea, P., & Jadán, O. (2023). Influence of climate on the composition, diversity, biomass and functional traits of tree vegetation of two Andean montane tropical forests. Ecología Austral, 33(3), 716–729. https://doi.org/10.25260/EA.23.33.3.0.2152