Diversity of wasps along an ecosystem disturbance gradient in the Manu Biosphere Reserve (Perú): Their bioindicator value

Authors

  • Javier Amaru Castelo Crees Foundation, Fundo Mascoitiana - Manu Learning Centre. Manu, Madre de Dios, Perú. Laboratorio de Entomología, Universidad Nacional de San Antonio Abad del Cusco. Cusco, Cusco, Perú
  • Edgar Marquina-Montesinos Crees Foundation, Fundo Mascoitiana - Manu Learning Centre. Manu, Madre de Dios, Perú. Laboratorio de Entomología, Universidad Nacional de San Antonio Abad del Cusco. Cusco, Cusco, Perú

DOI:

https://doi.org/10.25260/EA.23.33.2.0.2159

Keywords:

balanced variation, variation in gradients, ecological dominance, ecological succession, alpha diversity

Abstract

Diversity measures enable us to understand the extent to which communities have been affected by human disturbance. Various groups of insects have been used as ecological bioindicators of these environmental disturbances, but few include both social and solitary insects. Therefore, in the variation in present study, the diversity of wasps belonging to the Vespidae family was measured, distributed in three types of forests with different degrees of historical disturbance at the Manu Learning Center (MLC) biological station, was measured. The aim was to demonstrate how the Vespid communities are affected by disturbance gradients. MLC has three types of forest: partially cleared in regeneration forest (PCR), selectively logged in regeneration forest (SLR) and completely cleared in regeneration forest (CCR). We employed yellow pan traps, pitfall traps, and Malaise traps at nine stations, with three stations allocated to each type of forest. Rank-abundance curves, correspondence analysis (CA), Bray-Curtis beta diversity partitioning, nonmetric multidimensional analysis (NMDS), and similarity analysis (ANOSIM) were performed. In total, 841 individuals of 24 species were collected. The most abundant species was Angiopolybia paraensis (Spinosa 1851). Community structure and composition change according to the disturbance levels, with a balanced variation of Bray-Curtis of 85.65%. The most diverse forest is the most conserved (SLR). Five species were recorded exclusively in SLR and three in PCR. We concluded that vespids are good indicators of environmental quality since their populations present marked preferences and changes in their composition.

References

Abrahamczyk, S., B. Steudel, and M. Kessler. 2010. Sampling Hymenoptera along a precipitation gradient in tropical forests: The effectiveness of different coloured pan traps. Entomologia Experimentalis et Applicata 137(3):262-268. https://doi.org/10.1111/j.1570-7458.2010.01063.x.

Baselga, A. 2013. Separating the two components of abundance-based dissimilarity: Balanced changes in abundance vs. abundance gradients. Methods in Ecology and Evolution 4(6):552-557. https://doi.org/10.1111/2041-210X.12029.

Baselga, A. 2017. Partitioning abundance-based multiple-site dissimilarity into components: balanced variation in abundance and abundance gradients. Methods in Ecology and Evolution 8(7):799-808. https://doi.org/10.1111/2041-210X.12693.

Calderón, J., and C. Moreno. 2019. Diversidad beta como disimilitud: su partición en componentes de recambio y diferencias en riqueza. Pp. 203-222 en C. Moreno (ed.). La biodiversidad en un mundo cambiante: Fundamentos teóricos y metodológicos para su estudio. Universidad Autónoma del Estado de Hidalgo. Hidalgo. México.

Calderón-Patrón, J. M., C. E. Moreno, and I. Zuria. 2012. La diversidad beta: medio siglo de avances. Revista Mexicana de Biodiversidad 83(3):879-891. https://doi.org/10.7550/rmb.25510.

Chang, C. C., and B. L. Turner. 2019. Ecological succession in a changing world. Journal of Ecology 107(2):503-509. https://doi.org/10.1111/1365-2745.13132.

Corbara, B., J. M. Carpenter, R. Céréghino, M. Leponce, M. Gibernau, and A. Dejean. 2009. Diversity and nest site selection of social wasps along Guianese forest edges: assessing the influence of arboreal ants. Comptes Rendus - Biologies 332(5):470-479. https://doi.org/10.1016/j.crvi.2009.01.003.

Correa-Barbosa, B., T. Tagliatti-Maciel, and F. Prezoto. 2020. Chapter 5. Nesting Habitats of Neotropical Social Wasps. Pp. 85-98 en F. Prezoto, F. Santos, B. Correa and A. Somavilla (eds.). Neotropical Social Wasps: Basic and applied aspects. Springer, Berlin, Alemania. https://doi.org/10.1007/978-3-030-53510-0.

Estupiñan-Mojica, A., R. Portela-Salomão, C. N. Liberal, B. A. Santos, C. C. Machado, H. F. Araujo, J. Von Thaden, and F. Alvarado. 2022. Landscape attributes shape dung beetle diversity at multiple spatial scales in agricultural drylands. Basic and Applied Ecology 63:139-151. https://doi.org/10.1016/j.baae.2022.06.002.

FAO and PNUMA. 2020. El estado de los bosques del mundo 2020. Los bosques, la biodiversidad y las personas. Primera edición. FAO. Roma

Fernández, I. 1999. Evolución de la eusociabilidad de los insectos. Boletín de la Sociedad Entomológica Aragonesa 1999(26):713-726.

Gallice, G. R., G. Larrea-Gallegos, and I. Vázquez-Rowe. 2019. The threat of road expansion in the Peruvian Amazon. ORYX 53(2):284-292. https://doi.org/10.1017/S0030605317000412.

Gomes, B., and F. B. Noll. 2009. Diversity of social wasps (Hymenoptera, Vespidae, Polistinae) in three fragments of semideciduous seasonal forest in the northwest of São Paulo State, Brazil. Revista Brasileira de Entomologia 53(3):428-431. https://doi.org/10.1590/S0085-56262009000300018.

Harris, B. A., S. K. Braman, and S. V. Pennisi. 2017. Pan trap designs for monitoring pollinators and other beneficial insects in conservation gardens. Journal of Entomological Science 52(1):9-14. https://doi.org/10.18474/JES16-13.1.

Hill, M. O. 1973. Diversity and Eveness: A unifying notation and Its consequences. Ecology 54(2):427-432. https://doi.org/10.2307/1934352.

Joern, F., and D. Lindenmayer. 2007. Landscape modification and habitat fragmentation: a synthesis. Galemys 15(2001):55-66. https://doi.org/10.1111/j.1466-8238.2006.00287.x.

Jost, L. 2007. Partitioning Diversity into Independent Alpha and Beta Components. Ecology 88(10):2427-2439. https://doi.org/10.1890/06-1736.1.

Legendre, P., and L. Legendre. 1983. Numerical ecology, developments in Environmental Modelling. Elsevier. Ámsterdam. https://doi.org/10.1007/978-3-642-69024-2_56.

Martínez-Ramos, M., and X. García-Orth. 2007. Sucesión ecológica y restauración de las selvas húmedas. Boletín de la Sociedad Botánica de México 80(suplemento):69-84. https://doi.org/10.17129/botsci.1758.

Márquez, J. 2005. Técnicas de colecta y preservación de insectos. Boletín Sociedad Entomológica Aragonesa 37:385-408.

Noriega, J., E. Realpe, and G. Fagua. 2007. Diversidad de escarabajos coprófagos (Coleoptera: Scarabeidae) en un bosque de galería con tres estadios de alteración. Universitas Scientiarum 12:51-63. https://doi.org/10.25100/socolen.v33i1.9316.

O’Donnell, S. 1995. Necrophagy by Neotropical Swarm-Founding Wasps (Hymenoptera: Vespidae, Epiponini). Biotropica 27(1):133. https://doi.org/10.2307/2388911.

Ramírez-Restrepo, L., P. Chacón, and L. Constantino. 2007. Diversidad de mariposas diurnas (Lepidoptera: Papilionoidea y Hesperioidea) en Santiago de Cali, Valle del Cauca, Colombia. Revista Colombiana de Entomología 33(1):54-63.

Rasmussen, C., and A. Asenjo. 2009. A checklist to the wasps of Peru (Hymenoptera, Aculeata). ZooKeys 15:1-78. https://doi.org/10.3897/zookeys.15.196.

Rojas, E., B. R. Zutta, Y. K. Velazco, J. G. Montoya-Zumaeta, and M. Salvà-Catarineu. 2021. Deforestation risk in the Peruvian Amazon basin. Environmental Conservation 48(4):310-319. https://doi.org/10.1017/S0376892921000291.

Sarmiento, C. E., and J. M. Carpenter. 2006. Capítulo 50. Familia Vespidae. Pp. 539-562 en Sociedad Colombiana de Entomología (ed.). Introducción a los Himenóptera de la región Neotropical. Universidad Nacional de Colombia, Bogotá, Colombia.

SENAMHI. 2020. Climas del Perú. Mapa de clasificación Nacional. Resumen Ejecutivo. Ministerio del ambiente, Lima, Perú.

Sermeño-Correa, C., A. Lopera-Toro, O. Moreno-Mancilla, J. Candamil-Baños, L. Ramírez-Restrepo, and C. Taboada-Verona. 2022. Diversity of dung beetles (Coleoptera: Scarabaeidae) in three urban areas from Colombian Caribbean. Revista Peruana de Biología 29(1):1-11. https://doi.org/10.15381/RPB.V29I1.20887.

Silva, S. de S., G. G. Azevedo, and O. T. Silveira. 2011. Social wasps of two Cerrado localities in the northeast of Maranhão state, Brazil (Hymenoptera, Vespidae, Polistinae). Revista Brasileira de Entomologia 55(4):597-602. https://doi.org/10.1590/S0085-56262011000400017.

Silveira, O. T., M. C. Espósito, J. N. Dos Santos, and F. E. Gemaque. 2005. Social wasps and bees captured in carrion traps in a rainforest in Brazil. Entomological Science 8(1): 33-39. https://doi.org/10.1111/j.1479-8298.2005.00098.x.

Somavilla, A., M. L. De Oliveira, and O. T. Silveira. 2014. Diversity and aspects of the ecology of social wasps (Vespidae, Polistinae) in Central Amazonian “terra firme” forest. Revista Brasileira de Entomología 58(4):349-355. https://doi.org/10.1590/S0085-56262014005000007.

Somavilla, A., R. N. De Moraes, M. L. Oliveira, and J. A. Rafael. 2020. Biodiversity of insects in the Amazon: Survey of social wasps (Vespidae: Polistinae) in Amazon rainforest areas in Amazonas State, Brazil. Sociobiology 67(2):312-321. https://doi.org/10.13102/sociobiology.v67i2.4061.

Spector, S. 2006. Scarabaeine Dung Beetles (coleoptera: Scarabaeidae: Scarabaeinae): An Invertebrate Focal Taxon for Biodiversity Research and Conservation. The Coleopterists Bulletin 60(5):71-83. https://doi.org/10.1649/0010-065X(2006)60[71:SDBCSS]2.0.CO;2.

Tellería, J. L. 2013. Pérdida de biodiversidad. Causas y consecuencias de la desaparición de las especies Loss of biodiversity: causes and consequences of the species loss. Memorias de la Real Sociedad Española de Historia Natural 10(2):13-25.

Umair Sial, M., M. Zeeshan Majeed, A. Atiq, T. Farooq, H. M. Aatif, W. Jaleel, S. Khan, R. Akbar, M. Zaman, R. Saeed, Y. Ali, M. Saleh, F. Ullah, K. Ali Khan, and H. A. Ghrmah. 2022. Differential efficacy of edaphic traps for monitoring arthropods diversity in subtropical regions. Journal of King Saud University - Science 34(1):1-7. https://doi.org/10.1016/j.jksus.2021.101686.

Velasco, J., A. Millán, and L. Ramírez-Díaz. 1993. Colonización y sucesión de nuevos medios acuáticos I. Composición y estructura de las comunidades de insectos. Limnética 9(1):73-86. https://doi.org/10.23818/limn.09.10.

Vu, L. V., T. C. Bonebrake, M. Q Vu, and N. T. 2015. Butterfly diversity and habitat variation in a disturbed forest in northern Vietnam. Pan-Pacific Entomologist 91(1):29-38. https://doi.org/10.3956/2014-91.1.029.

Wagner, P. M., G. O. Abagandura, M. Mamo, T. Weissling, A. Wingeyer, and J. D. Bradshaw. 2021. Abundance and Diversity of Dung Beetles (Coleoptera: Scarabaeoidea) as Affected by Grazing Management in the Nebraska Sandhills Ecosystem. Environmental Entomology 50(1):222-231. https://doi.org/10.1093/ee/nvaa130.

Whitworth, A., J. Villacampa, A. Brown, R. P. Huarcaya, R. Downie, and R. MacLeod. 2016. Past human disturbance effects upon biodiversity are greatest in the canopy; A case study on rainforest butterflies. PLoS ONE 11(3). https://doi.org/10.1371/journal.pone.0150520.

Diversity of wasps along an ecosystem disturbance gradient in the Manu Biosphere Reserve (Perú): Their bioindicator value

Published

2023-06-13

How to Cite

Amaru Castelo, J., & Marquina-Montesinos, E. (2023). Diversity of wasps along an ecosystem disturbance gradient in the Manu Biosphere Reserve (Perú): Their bioindicator value. Ecología Austral, 33(2), 598–608. https://doi.org/10.25260/EA.23.33.2.0.2159