Physiological response of Beilschmiedia miersii to winter water stress in nursery trials

Authors

  • Karen Peña-Rojas Laboratorio de Bosques Mediterráneos de la Facultad de Ciencias Forestales de la Universidad de Chile. La Pintana, Chile
  • Sergio Donoso Laboratorio de Bosques Mediterráneos de la Facultad de Ciencias Forestales de la Universidad de Chile. La Pintana, Chile
  • Miguel Quintanilla Laboratorio de Bosques Mediterráneos de la Facultad de Ciencias Forestales de la Universidad de Chile. La Pintana, Chile
  • Claudia Espinoza Laboratorio de Bosques Mediterráneos de la Facultad de Ciencias Forestales de la Universidad de Chile. La Pintana, Chile
  • Alejandro Riquelme Laboratorio de Bosques Mediterráneos de la Facultad de Ciencias Forestales de la Universidad de Chile. La Pintana, Chile
  • Rodrigo Gangas Laboratorio de Bosques Mediterráneos de la Facultad de Ciencias Forestales de la Universidad de Chile. La Pintana, Chile
  • Carolain Badaracco Laboratorio de Bosques Mediterráneos de la Facultad de Ciencias Forestales de la Universidad de Chile. La Pintana, Chile

DOI:

https://doi.org/10.25260/EA.23.33.2.0.2196

Keywords:

Sclerophyllous forest, Hydrophilic, Water potential, Drought

Abstract

Beilchmiedia miersii (Gay) Kosterm (Belloto of the North), an endemic species of central Chile, belongs to the hydrophilous forest subtype within the sclerophyllous forest ecosystem; it is azonal in character and fragmented in distribution. Preferably, its populations are found near stream areas, given its high water needs, a situation that is aggravated by the intense and prolonged drought that affects the area where it grows. B. miersii faces strong environmental stress during the summer, and it is unknown if the reduction in precipitation also causes water stress during the winter. Therefore, we hypothesized that B. miersii would present a low level of stress under the water deficit during the winter season, a period in which climatic factors such as radiation, relative humidity and precipitation are less restrictive to vegetation. The field trial was established in a nursery in the Metropolitan Region of Chile and included two treatments: control (TRC) and restriction (TRR). In both treatments, growth (root collar diameter and length), biomass variation, leaf water potential and substrate water content were evaluated on days 1, 126 and 161. Contrary to our hypothesis, the results revealed that the winter water deficit generated stress in the TRR plants, leading to physiological and metabolic changes that negatively impacted their growth, development and biomass accumulation. In the short term, this resulted in a reduced capacity to face the adverse climatic conditions that occur during the summer period.

References

Álvarez-Garretón, C., A. Lara, J. Boisier, and M. Galleguillos. 2019. The impacts of Native Forests and Forest Plantations on water supply in Chile. Forests 10(6):1-18. https://doi.org/10.3390/f10060473.

Arancibia, J., J. Araya, and D. Zunino. 2020. Análisis vegetacional del bosque nativo en la región Metropolitana de la zona central de Chile: zona de estudio valle de Colliguay. Investigaciones Geográficas 59:115-119. https://doi.org/10.5354/0719-5370.2020.55371.

Arcos, F. 2020. Aporte de nutrientes por caída de hojarasca en plantaciones de Tectona grandis (Teca) en períodos de sequía. Revista Digital Novasinergia 3(1):17-26. https://doi.org/10.37135/ns.01.05.02.

DMC (Dirección Meteorológica de Chile). 2001. Climatología regional. Departamento de Climatología. Santiago, Chile. Pp. 47.

Donoso, S., K. Peña-Rojas, C. Pacheco, G. Luna, and A. Aguirre. 2011. Respuesta fisiológica y de crecimiento en plantas de Quillaja saponaria y Cryptocarya alba sometidas a restricción hídrica. Bosque 32(2):187-195. https://doi.org/10.4067/S0717-92002011000200009.

Drechsler, K., I. Kisekkaa, and S. Upadhyaya. 2019. A comprehensive stress indicator for evaluating plant water status in almond trees. Agricultural Water Management 216:214-223. https://doi.org/10.1016/j.agwat.2019.02.003.

Engelbrecht, B., and T. Kursar. 2003. Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants. Oecologia 136(3):383-393. https://doi.org/10.1007/s00442-003-1290-8.

Flores, L., H. Estrada, J. Jiménez, and L. Pizón. 2012. Efecto del estrés hídrico sobre el crecimiento y eficiencia del uso del agua en plántulas de tres especies arbóreas caducifolias. Terra Latinoamericana 30(4):343-353. URL: tinyurl.com/3jcj2dew.

Hachemi, A., O. Ali, T. Belgasi, A. Lahrouni, D. Mercht, et al. 2021. Effect of hydric and light stress on biomass, nutrient uptake and enzymatic antioxidants of Argania spinosa seedlings. Archives of Biological Sciences 73(1):145-153. https://doi.org/10.2298/ABS201220010H.

IREN (Instituto Nacional de Investigación de Recursos Naturales). 1964. Suelos: Descripciones. proyecto aerofotogramétrico. Chile/OEA/BID. Santiago, Chile. Pp. 389.

Kremer, K., A. Promis, G. Mancilla, and C. Magni. 2018. Leaf litter and irrigation can increase seed germination and early seedling survival of the recalcitrant-seeded tree Beilchmiedia miersii. Austral Ecology 44(1):86-94. https://doi.org/10.1111/aec.12655.

Karlic, H., and H. Richter. 1983. Developmental effects on leaf water relations of two evergreen shrubs (Prunus laurocerasus L. and Ilex aquifolium L.). Flora 173(1-2):143-150. https://doi.org/10.1016/S0367-2530(17)31993-X.

Mancilla, G., C. Magni, and A. Promis. 2014. Proyecto 033/2012. Permanencia de Beilschmiedia miersii. Regeneración según contenido hídrico del suelo y presencia de hojarasca. Propuestas. Fondo de Investigación del Bosque Nativo. Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile. Corporación Nacional Forestal, Ministerio de Agricultura. Pp. 120.

MINAGRI (Ministerio de Agricultura). 1995. Decreto 13. Declara Monumento Natural las Especies Forestales Queule, Pitao, Belloto del Sur, Belloto del Norte y Ruil. URL: tinyurl.com/392e8ptb.

MINSEGPRES (Ministerio Secretaría General de la Presidencia). 2008. Aprueba y oficializa nómina para el tercer proceso de clasificación de especies según su estado de conservación. Diario Oficial de la República de Chile. N°39.100. URL: tinyurl.com/2p93m6e9.

Miranda, A., A. Lara, A. Altamirano, C. Di Bella, M. González, and J. Camarero. 2020. Forest browning trends in response to drought in a highly threatened mediterranean landscape of South America. Ecological Indicators 115:106401. https://doi.org/10.1016/j.ecolind.2020.106401.

Munné-Bosch, S., and L. Alegre. 2004. Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31(3):203-216. https://doi.org/10.1071/FP03236.

Montenegro, G. 2010. Proyecto 025/2010. Distribución, hábitat potencial y diversidad genética de poblaciones de Belloto del Norte (Beilschmiedia miersii) y Lúcumo chileno (Pouteria splendens). Informe Final. Fondo de Investigación del Bosque Nativo. Corporación Nacional Forestal, Ministerio de Agricultura. Pp. 82.

Peña-Rojas, K., X. Aranda, and I. Fleck. 2004. Stomatal limitation to CO2 assimilation and down-regulation of photosynthesis in Quercus ilex resprouts in response to slowly imponed drought. Tree Physiology 24:813-822. https://doi.org/10.1093/treephys/24.7.813.

Peña-Rojas, K., S. Donoso, C. Pacheco, A. Riquelme, R. Gangas, et al. 2018. Respuestas morfo-fisiológicas de plantas de Lithraea caustica (Anacardiaceae) sometidas a restricción hídrica controlada. Bosque 39(1):27-36. https://doi.org/10.4067/S0717-92002018000100027.

Santibáñez, F., and J. Uribe. 1990. Atlas agroclimático de Chile. Regiones V y Metropolitana. Facultad de Ciencias Agrarias y Forestales, Universidad de Chile. Santiago, Chile. Pp. 65.

Scholander, P., H. Hammel, E. Bradstreet, and E. Hemminbsen. 1965. Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science 148:339-346. https://doi.org/10.1126/science.148.3668.339.

Tyree, M., and H. Hammel. 1972. The measurement of the turgor pressure and the water relations of plants by the pressure-bomb Technique. Journal of Experimental Botany 23:267-282. https://doi.org/10.1093/jxb/23.1.267.

Valverde, J., and D. Arias. 2020. Efectos del estrés hídrico en crecimiento y desarrollo fisiológico de Gliricidia sepium (Jacq.) Kunth ex Walp. Colombia Forestal 23(1):20-34. https://doi.org/10.14483/2256201X.14786.

Physiological response of Beilschmiedia miersii to winter water stress in nursery trials

Published

2023-07-01

How to Cite

Peña-Rojas, K., Donoso, S., Quintanilla, M., Espinoza, C., Riquelme, A., Gangas, R., & Badaracco, C. (2023). Physiological response of Beilschmiedia miersii to winter water stress in nursery trials. Ecología Austral, 33(2), 621–631. https://doi.org/10.25260/EA.23.33.2.0.2196