Crop intensification influences water infiltration and microbial activity in agricultural soils from the southeast of the Argentinean Pampas

Authors

  • Judith L. Ronco Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS; CONICET-INTA). Balcarce, Argentina
  • Gabriela A. Fernández Gnecco Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) y FIBA. Mar del Plata, Argentina https://orcid.org/0000-0002-1857-1237
  • Verónica F. Consolo Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) y FIBA. Mar del Plata, Argentina
  • Marino Puricelli Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS; CONICET-INTA). Balcarce, Argentina
  • Santiago G. Delgado Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata. Mar del Plata, Argentina https://orcid.org/0000-0001-6748-3658
  • Gisela V. García Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata. Mar del Plata, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) https://orcid.org/0000-0002-0628-7917
  • Pablo A. Barbieri Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS; CONICET-INTA). Balcarce, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) https://orcid.org/0000-0002-6961-126X
  • Fernanda Covacevich Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) y FIBA. Mar del Plata, Argentina https://orcid.org/0000-0002-6919-6422

DOI:

https://doi.org/10.25260/EA.24.34.2.0.2228

Keywords:

arbuscular mycorrhizal fungi, monocrop, cover crop, rotation, glomalin, water inflow

Abstract

Low crop diversification in highly productive areas has led to declines in total organic carbon (TOC) in soil, essential nutrients for plant’s growth and microbial diversity/activity. This could have an impact on the movement of water in the soil profile and, consequently, on the production of crops. To address these challenges there is growing support for crops intensification, which involves increasing the number/variety of crops throughout the year. The purpose of this study was to assess the influence of crop intensification on the initial infiltration of water in the upper layer of the soil profile and the activity/abundance of soil microorganisms involved in the turnover of TOC and phosphorus (P). Three crop regimes were assessed in a long-term experiment established in the southeast of the Argentinean Pampas: without intensification (Monocrop: soybean), intensified (Cover crop: CC [oat]/soybean) and Rotation (CC [oat]/soybean-corn-wheat). Soil in the Monocrop regime exhibited the highest sorptivity values and a lower TOC, suggesting a higher initial rate of water entry into the profile, which could break down soil aggregates. Under rotation, the highest infiltration rate was recorded, which would guarantee more water flow into the profile. Intensified soils showed the highest total glomalin content and root colonization with arbuscular mycorrhizal fungi (AMF), which are known to contribute to plant nutrient uptake and growth and soil aggregate stability. Trichoderma abundance and their P-solubilizing capacity were also higher under Rotation, which could favor AMF activity. Correlation analysis revealed a significant positive correlation between sorptivity and glomalin under Rotation. Our study suggests that soils from the Argentinean south-eastern Humid Pampas under crop intensification promote soil water storage and maintenance of soil structure in the upper layers compared to Monocrop, which could be attributed —at least in part— to a greater microbiological activity and TOC content.

Author Biographies

Judith L. Ronco, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS; CONICET-INTA). Balcarce, Argentina

Geol. Judith L. Ronco. Geologa, becaria del CONICET. Estudiante de Doctorado en Ciencias Agrarias. Area de interes: conservacion de suelos, materia organica, dinamica del agua, microorganismos involucrados en estabilidad del suelo

Gabriela A. Fernández Gnecco, Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) y FIBA. Mar del Plata, Argentina

Ing. Gabriela A. Fernandez Gnecco. Ingeniera Agrónoma estudiante de Doctorado en Ciencias Agrarias, con experiencia en microbiología de suelos en sistemas agrícolas con enfoque de estudios moleculares.

Verónica F. Consolo, Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) y FIBA. Mar del Plata, Argentina

Dr. Veronica Fabiana Consolo. Conicet Researcher at INBIOTEC (CONICET), Mar del Plata Argentina.  Soil mycology and microbiology research group. Areas of interest: biological control, plant growth promotion, Trichoderma, enzymes and fungal metabolites, agronanotechnology

References

Andrade, F., M. Taboada, D. Lema, N. Maceira, H. Echeverría, et al. 2017. Los desafíos de la agricultura argentina. Satisfacer las futuras demandas y reducir el impacto ambiental. INTA Ediciones. Argentina. Primera edición. Pp. 1-120.

Barbieri, P. A., H. R. Sainz Rozas, F. Covacevich, and H. E. Echeverría. 2014. Phosphorus placement effects on phosphorous recovery efficiency and grain yield of wheat under no-tillage in the humid Pampas of Argentina. International Journal of Agronomy 2014:507105. https://doi.org/10.1155/2014/507105.

Behrends Kraemer, F., H. Morrás, P. L. Fernández, M. Duval, J. Galantini, et al. 2021. Influence of edaphic and management factors on soils aggregates stability under no-tillage in Mollisols and Vertisols of the Pampa Region, Argentina. Soil and Tillage Research 209:104901. https://doi.org/10.1016/j.still.2020.104901.

Bharati, L., K. H. Lee, T. M. Isenhart, and R. C. Schult. 2002. Soil-water infiltration under crops, pasture, and established riparian buffer in Midwestern USA. Agroforestry Systems 56:249-257. https://doi.org/10.1023/A:1021344807285.

Blanco-Canqui, H., and J. G. Benjamin. 2013. Impacts of soil organic carbon on soil physical behavior. Quantifying and Modeling Soil Structure Dynamics 3:11-40. https://doi.org/10.2134/advagricsystmodel3.c2.

Blanco-Canqui, H., and S. J. Ruis. 2020. Cover crop impacts on soil physical properties: A review. Soil Science Society of America Journal 84(5):1527-1576. https://doi.org/10.1002/saj2.20129.

Bononi, L., J. B. Chiaramonte, C. C. Pansa, M. Alves Moitinho, and I. Soares Melo. 2020. Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Scientific Report 11(1):9081. https://doi.org/10.1038/s41598-020-59793-8.

Box, G. E. P., and D. R. Cox. 1964. The analysis of transformations (with discussion). Journal of the Royal Statistical Society: Series B (Methodological) 26(2):211-243. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x.

Bray, R. H., and L. T. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus is soils. Soil Science 59:39-45. https://doi.org/10.1097/00010694-194501000-00006.

Carminati, A., P. Benard, M. A. Ahmed, and M. Zarebanadkouki. 2017. Liquid bridges at the root-soil interface. Plant and Soil 417(1):1-15. https://doi.org/10.1007/s11104-017-3227-8.

Caviglia, O. P., and F. H. Andrade. 2010. Sustainable intensification of agriculture in the Argentinean Pampas: Capture and use efficiency of environmental resources. The American Journal Plant Science and Biotechnology 3 (Special Issue 1):1-8.

Chari, M. M., M. T. Poozan, and P. Afrasiab. 2020. Modelling soil water infiltration variability using scaling. Biosystems Engineering 196:56-66. https://doi.org/10.1016/j.biosystemseng.2020.05.014.

Commatteo, J. G., V. F. Consolo, P. A. Barbieri, and F. Covacevich. 2019. Indigenous arbuscular mycorrhiza and Trichoderma from systems with soybean predominance can improve tomato growth. Soil and Environment, 38 (2): 151-161. https://doi.org/10.25252/SE/19/91805.

Commatteo, J.G., P.A. Barbieri, R.A. Corral and F. Covacevich. 2023. The potential of glomalin-related soil proteins as a sensitive indicator of changes in different cropping systems in the Argentine Pampas. Environmental Sustainability. https://doi.org/10.1007/s42398-023-00265-w.

Della Mónica, I. F., M. S. Godoy, A. M. Godeas, and J. M. Scervino. 2018. Fungal extracellular phosphatases: their role in P cycling under different pH and P sources availability. Journal of Applied Microbiology 124(1):155-165. https://doi.org/10.1111/jam.13620.

De la Vega, G., M. G. Castiglioni, and M. G. Massobrio. 2004. Infiltración en un Argiudol vértico bajo siembra directa en condiciones variables de cobertura humedad inicial. Ciencia del Suelo 22(1):52-55.

Driver, J. D., W. E. Holben, and M. C. Rillig. 2005. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry 37(1):101-106. https://doi.org/10.1016/j.soilbio.2004.06.011.

Elad, Y., and I. Chet. 1983. Improved selective media for isolation of Trichoderma spp. or Fusarium spp. Phytoparasitica 11:55-58. https://doi.org/10.1007/BF02980712.

Etesami, H., B. R. Jeong, and B. R. Glick. 2021. Contribution of arbuscular mycorrhizal fungi, phosphate-solubilizing bacteria, and silicon to P uptake by plant. Frontiers in Plant Science 12:699618. https://doi.org/10.3389/fpls.2021.699618.

Fehr, W. R., and C. E. Caviness. 1977. Stages of soybean development. Iowa State University Cooperative Extension Service. Special Report 87.

Feeney, D. S., D. Tim, P. D. Hallett, J. Illian, K. Ritz, et al. 2004. Does the presence of glomalin relate to reduced water infiltration through hydrophobicity? Canadian Journal of Soil Science 84(4):365-372. https://doi.org/10.4141/S03-095.

Fernández-Gnecco, G. A., K. Smalla, L. Maccario, S. Sørensen, P. A. Barbieri, et al. 2021. Microbial community analysis of soils under different soybean cropping regimes in the Argentinean south-eastern Humid Pampas. FEMS Microbiology Ecology 97:fiab007. https://doi.org/10.1093/femsec/fiab007.

Fierer, N. 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology 15:579-90. https://doi.org/10.1038/nrmicro.2017.87.

Franzluebbers, A. J. 2002. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil and Tillage Research 66(2):197-205.https://doi.org/10.1016/S0167-1987(02)00027-2.

Frey, S. D. 2019. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annual Review of Ecology, Evolution, and Systematics 50:237-259. https://doi.org/10.1146/annurev-ecolsys-110617-062331.

Hallett, P. D., and I. M. Young. 1999. Changes to water repellence of soil aggregates caused by substrate‐induced microbial activity. European Journal of Soil Science 50(1):35-40. https://doi.org/10.1046/j.1365-2389.1999.00214.x.

Hart, M. M., and R. J. Reader. 2002. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytologist 153(2):335-344. https://doi.org/10.1046/j.0028-646X.2001.00312.x.

Holátko, J., M. Brtnický, J. Kučerík, M. Kotianová, J. Elbl, et al. 2021. Glomalin-Truths, myths, and the future of this elusive soil glycoprotein. Soil Biology and Biochemistry 153:108116. https://doi.org/10.1016/j.soilbio.2020.108116.

Hosseini, B., M. R. Mosaddeghi, and M. M. Majidi. 2021. Rhizosphere soil quality of different cultivated and wild barley genotypes as evaluated using physical and chemical indicators. Journal of Soil Science and Plant Nutrition 21:2538-2550. https://doi.org/10.1007/s42729-021-00545-6.

Hossain, M. B. 2021. Glomalin and contribution of glomalin to carbon sequestration in soil: A review. Food Science and Technology 9(1):191-196. https://doi.org/10.24925/turjaf.v9i1.191-196.3803.

Karahan, G. 2022. Evaluating soil water matric pressure and sorptivity relationship as affected by some properties of a clay soil. Canadian Journal of Soil Science 102(2):293-300. https://doi.org/10.1139/cjss-2021-0095.

Kobae, Y. 2019. Dynamic Phosphate uptake in Arbuscular Mycorrhizal roots under field conditions. Frontiers in Environmental Science 6:159. https://doi.org/10.3389/fenvs.2018.00159.

Ma, R., F. Hu, C. Xu, J. Liu, and S. Zhao. 2022. Response of soil aggregate stability and splash erosion to different breakdown mechanisms along natural vegetation restoration. Catena 208:105775. https://doi.org/10.1016/j.catena.2021.105775.

Martínez, J. P., C. Crespo, H. R. Sainz Rozas, H. E. Echeverría, G. Studdert, et al. 2020. Soil organic carbon in cropping sequences with predominance of soybean in the Argentinean humid pampa. Soil Use and Management 36:173-183. https://doi.org/10.1111/sum.12547.

Mc Gonigle, T., M. Miller, D. Evans, G. Fairchil, and J. Swan. 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist 115:495-501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x.

Moragoda, N., M. Kumar, and S. Cohen. 2022. Representing the role of soil moisture on erosion resistance in sediment models: Challenges and opportunities. Earth-Science Reviews 229:104032. https://doi.org/10.1016/j.earscirev.2022.104032.

Morris, E. K., D. J. P Morris, S. Vogt, S. C. Gleber, M. Bigalke, W. Wilcke, et al. 2019. Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi. ISME Journal 13:1639-1646. https://doi.org/10.1038/s41396-019-0369-0.

Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters 170:265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x.

Nelson, D. W., and L. E. Sommers. 1982. Total carbon, organic carbon and organic matter. Pp. 199-224 in A. L. Page, R. H. Miller and D. R. Keeney (eds.). Methods of Soil Analysis Part 2-Chemical and Microbiological Properties. American Society of Agronomy: Madison, WI. https://doi.org/10.2134/agronmonogr9.2.2ed.c29.

Newman, E. I. 1966. A method of estimating total length of root in a sample. Journal of applied Ecology 3(1):139-145. https://doi.org/10.2307/2401670.

Ontivero R. E., L. Risio Allione, F. Castellarini, and M. A. Lugo. 2023. Composición de las comunidades de hongos micorrícicos arbusculares en diferentes usos de suelo en el Caldenal, Argentina. Ecología Austral 33:095-107 https://doi.org/10.25260/EA.23.33.1.0.1955.

Philip, J. R. 1957. The theory of infiltration: I. The infiltration equation and its solution. Soil Science 83:345-357. https://doi.org/10.1097/00010694-195705000-00002.

Phillips, J. M., and D. S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55:159-161. https://doi.org/10.1016/S0007-1536(70)80110-3.

Rabot, E., S. Wiesmeier, S. Schlüter, and H. J. Vogel. 2018. Soil structure as an indicator of soil functions: A review. Geoderma 314:122-137. https://doi.org/10.1016/j.geoderma.2017.11.009.

Ramesh, T., N. S. Bolan, M. B. Kirkham, H. Wijesekara, M. Kanchikerimath, et al. 2019. Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Advances in Agronomy 156:1-107. https://doi.org/10.1016/bs.agron.2019.02.001.

Rillig, M. C. 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science 84(4):355-363. https://doi.org/10.4141/S04-003.

Ruis, S. J., H. Blanco-Canqui, R. W. Elmore, C. Proctor, K. Koehler-Cole, et al. 2020. Impacts of cover crop planting dates on soils after four years. Agronomy Journal 112(3):1649-1665. https://doi.org/10.1002/agj2.20143.

Sainz Rozas, H. R., H. E. Echeverría, and H. Angelini. 2012. Fósforo disponible en suelos agrícolas de la región Pampeana y Extra Pampeana argentina. Revista de Investigaciones Agropecuarias 38:1.

Sharma, M. L., G. A. Gander, and C. G. Hunt. 1980. Spatial variability of infiltration in a watershed. Journal of Hydrology 45:101-122. https://doi.org/10.1016/0022-1694(80)90008-6.

Scervino, J., V. Papinutti, M. Godoy, M. Rodríguez, I. Della Monica, M. Recchi, et al. 2011. Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. Journal of Applied Microbiology 110:1215-1223. https://doi.org/10.1111/j.1365-2672.2011.04972.x.

Soil Survey Staff. 2014. Keys to Soil Taxonomy. United States Department of Agriculture Natural Resources Conservation Service, Washington, DC, USA.

Soracco, C. G., R. Villarreal, E. M. Melani, J. A. Oderiz, M. P. Salazar, et al. 2019. Hydraulic conductivity and pore connectivity. Effects of conventional and no-till systems determined using a simple laboratory device. Geoderma 337:1236-1244. https://doi.org/10.1016/j.geoderma.2018.10.045.

Tosi, M., E. Kovalski Mitter, J. Gaiero, and K. Dunfield. 2020. It takes three to tango: the importance of microbes, host plant, and soil management to elucidate manipulation strategies for the plant microbiome. Canadian Journal of Microbiology 66(7):413-433. https://doi.org/10.1139/cjm-2020-0085.

Tourn, S. N., C. C. Videla, and G. A. Studdert. 2019. Ecological agriculture intensification through crop-pasture rotations does improve aggregation of Southeastern-Pampas Mollisols. Soils and Tillage Research 195:104411. https://doi.org/10.1016/j.still.2019.104411.

Viglizzo, E. F., F. C. Frank, L. V. Carreño, E. G. Jobbágy, H. Pereyra, et al. 2011. Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Global Change Biology 17(2):959-973. https://doi.org/10.1111/j.1365-2486.2010.02293.x.

Villarreal, R., L. A. Lozano, N. Polich, M. P. Salazar, M. Barraco, et al. 2022. Cover crops effects on soil hydraulic properties in two contrasting Mollisols of the Argentinean Pampas region. Soil Science Society of America Journal 86(6):1397-1412. https://doi.org/10.1002/saj2.20373.

Vogelmann, E., J. Reichert, J. Prevedello, G. Awe, and J. Mataix-Solera. 2013. Can occurrence of soil hydrophobicity promote the increase of aggregates stability? Catena 110:24-31. https://doi.org/10.1016/j.catena.2013.06.009.

Vogelmann, E. S., J. M. Reichert, J. Prevedello, G. O. Awe, and A. Cerdà. 2017. Soil moisture influences sorptivity and water repellency of topsoil aggregates in native grasslands. Geoderma 305:374-381. https://doi.org/10.1016/j.geoderma.2017.06.024.

Wall, L. G., L. A. Gabbarini, A. E. Ferrari, J. P. Frene, J. Covelli, et al. 2019. Changes of paradigms in agriculture soil microbiology and new challenges in microbial ecology. Acta Ecologica - International Journal of Ecology 95:68-73. https://doi.org/10.1016/j.actao.2019.02.001.

Wilson, M. G., A. E. Maggi, M. G. Castiglioni, E. A. Gabioud, and M. C. Sasal. 2020. Conservation of ecosystem services in argiudolls of Argentina. Agriculture 10(12):649. https://doi.org/10.3390/agriculture10120649.

Wright, S. F., K. A. Nichols, and W. F. Schmidt. 2006. Comparison of efficacy of three extractants to solubilize glomalin on hyphae and in soil. Chemosphere 64(7):1219-1224. https://doi.org/10.1016/j.chemosphere.2005.11.04.

Zhou, J., X. Chai, L. Zhang, T. S. George, F. Wang, et al. 2020. Different arbuscular mycorrhizal fungi colonizing on a single plant root system recruit distinct microbiomes. mSystems 5:e00929-20. https://doi.org/101128/mSystems.00929-20.

Crop intensification influences water infiltration and microbial activity in agricultural soils from the southeast of the Argentinean Pampas

Downloads

Additional Files

Published

2024-07-11

How to Cite

Ronco, J. L., Fernández Gnecco, G. A., Consolo, V. F., Puricelli, M., Delgado, S. G., García, G. V., Barbieri, P. A., & Covacevich, F. (2024). Crop intensification influences water infiltration and microbial activity in agricultural soils from the southeast of the Argentinean Pampas. Ecología Austral, 330–345. https://doi.org/10.25260/EA.24.34.2.0.2228

Issue

Section

Articles