Rangeland functional archetypes: Recovering the missing link of the rangeland assessment in Patagonia
DOI:
https://doi.org/10.25260/EA.24.34.2.0.2238Keywords:
arid regions, steppes, wetlands, livestock, pastoralism, adaptive managementAbstract
Rangeland assessment in the arid and semi-arid regions of Patagonia, Argentina, is a key tool both in livestock management and in environmental evaluations and monitoring of complex processes such as desertification and the impact of climate change. Although most rangeland assessment methods have assigned efforts to data resolution (field assessment plots) or information extension (landscape-scale classifications using remote sensing), the temporal variation of the vegetation has received less attention. It can be argued that the reasons for this deficit respond to the cost of carrying out field evaluations over time and/or to the short series of satellite data available until a couple of decades ago. However, a current advantage is that there are already more than 20 years of satellite data series, which opens up new possibilities to guide greater efforts in the study of the dynamics, that is, the temporal and spatiotemporal variability of the vegetation productivity. Our objective was to evaluate the application of a vegetation functional classification method, analyzing the complementation of information between structural and functional aspects of rangelands at a farm scale. In particular, we compared the results obtained by a classification of landscape units and physiognomy of vegetation and the results of a classification with a characterization of the dynamics of the vegetation productivity from the protocol that we have called Rangeland Functional Archetypes. The results emphasize the need to incorporate the dynamics of vegetation productivity as a classifying factor and not as a dependent variable of a previously defined structural classification. We discuss the potential and future steps to move forward in the integration of both approaches at the farm scale in the livestock systems of Patagonia, as a tool for a complementary structural and functional assessment of rangelands, oriented towards planning and adaptive management.
References
Aguiar, M. R., and O. E. Sala. 1999. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends in Ecology and Evolution 14:273-277. https://doi.org/10.1016/S0169-5347(99)01612-2.
Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6):716-723. https://doi.org/10.1109/tac.1974.1100705.
Aramayo, V., O. A. Bruzzone, D. A. Castillo, M. H. Easdale, F. Raffo, and F. Umaña. 2019. Estancia Pilahue: evaluación forrajera y dinámica de la productividad de cuadros. INTA Bariloche. Pp. 84.
Aslak, U. 2016. Py_pcha. URL: github.com/ulfaslak/py_pcha.
Bestelmeyer, B. T., A. J. Tugel, G. L. Peacock Jr, D. G. Robinett, P. L. Shaver, J. R. Brown, J. E. Herrick, H. Sánchez, and K. M. Havstad. 2009. State-and-transition models for heterogeneous landscapes: a strategy for development and application. Rangeland Ecology and Management 62(1):1-15. https://doi.org/10.2111/08-146.
Bestelmeyer, B. T., D. P. Goolsby, and S. R. Archer. 2011. Spatial perspectives in state‐and‐transition models: A missing link to land management? Journal of Applied Ecology 48(3):746-757. https://doi.org/10.1111/j.1365-2664.2011.01982.x.
Bingham, C., M. Godfrey, and J. W. Tukey. 1967. Modern techniques of power spectrum estimation. IEEE Transactions on Audio and Electroacoustics 15(2):56-66. https://doi.org/10.1109/tau.1967.1161895.
Bisigato, A. J., and M. B. Bertiller. 1997. Grazing effects on patchy dryland vegetation in northern Patagonia. Journal of Arid Environments 36(4):639-653. https://doi.org/10.1006/jare.1996.0247.
Bisigato, A. J., M. B. Bertiller, J. O. Ares, and G. E. Pazos. 2005. Effect of grazing on plant patterns in arid ecosystems of Patagonian Monte. Ecography 28(5):561-572. https://doi.org/10.1111/j.2005.0906-7590.04170.x.
Box, G. E. P., G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. 2016. Time series analysis: forecasting and control (5th ed.). Hoboken, New Jersey: John Wiley and Sons, Incorporated. Pp. 53. https://doi.org/10.1111/jtsa.12194.
Bran, D., J. Ayesa, C. López. 2000. Regiones Ecológicas de Río Negro. Comunicación Técnica No. 59. INTA Bariloche: Río Negro, Argentina.
Brigham, E. O., and R. E. Morrow. 1967. The fast Fourier transform. IEEE Spectrum 4(12):63-70. https://doi.org/10.1109/mspec.1967.5217220.
Briske, D. D., S. D. Fuhlendorf, and F. E. Smeins. 2005. State-and-transition models, thresholds, and rangeland health: a synthesis of ecological concepts and perspectives. Rangeland Ecology and Management 58(1):1-10. https://doi.org/10.2111/1551-5028(2005)58<1:smtarh>2.0.co;2.
Borrelli, P., G. Oliva, A. Cibils, P. Rial, and L. González. 2001. Evaluación de pastizales. Pp.161-182 en P. Borrelli and G. Oliva (eds.) Ganadería ovina sustentable en la Patagonia Austral. Tecnología de Manejo Extensivo. PRODESAR, INTA-GTZ.
Bruzzone, O., and M. H. Easdale. 2021. Archetypal temporal dynamics of arid and semi-arid rangelands. Remote Sensing of Environment 254:112279. https://doi.org/10.1016/j.rse.2020.112279.
Bruzzone, O. A., D. V. Perri, and M. H. Easdale. 2023. Vegetation responses to variations in climate: A combined ordinary differential equation and sequential Monte Carlo estimation approach. Ecological Informatics 73:101913. https://doi.org/10.1016/j.ecoinf.2022.101913.
Buono, G., M. Oesterheld, V. Nakamatsu, and J. M. Paruelo. 2010. Spatial and temporal variation of primary production of Patagonian wet meadows. Journal of Arid Environments 74:1257-1261. https://doi.org/10.1016/j.jaridenv.2010.05.026.
Chen, S. S., D. L. Donoho, and M. A. Saunders. 2001. Atomic decomposition by basis pursuit. SIAM Review 43(1):129-159. https://doi.org/10.1137/s003614450037906x.
Chuvieco, E. 2010. Teledetección Ambiental: La Observación de la Tierra Desde el Espacio, 3ra ed. Editorial Ariel: Barcelona, España.
Cooley, J. W., P. A. Lewis, and P. D. Welch. 1969. The fast Fourier transform and its applications. IEEE Transactions on Education 12(1):27-34. https://doi.org/10.1109/te.1969.4320436.
Cutler, A., and L. Breiman. 1994. Archetypal analysis. Technometrics 36(4):338-347. https://doi.org/10.1080/00401706.1994.10485840.
Didan, K., A. B. Munoz, R. Solano, and A. Huete. 2015. MODIS vegetation index user’s guide (MOD13 series). University of Arizona: Vegetation Index and Phenology Lab 35.
Easdale, M. H., and H. Rosso. 2010. Dealing with drought: social implications of different smallholder survival strategies in semi-arid rangelands of Northern Patagonia, Argentina. The Rangeland Journal 32(2):247-255. https://doi.org/10.1071/rj09071.
Easdale, M. H., D. Sacchero, M. Vigna, and P. Willems. 2014. Assessing the magnitude of impact of volcanic ash deposits on Merino wool production and fibre traits in the context of a drought in North-west Patagonia, Argentina. The Rangeland Journal 36(2):143-149. https://doi.org/10.1071/rj13124.
Easdale, M. H., and O. Bruzzone. 2018. Spatial distribution of volcanic ash deposits of 2011 Puyehue-Cordón Caulle eruption in Patagonia as measured by a perturbation in NDVI temporal dynamics. Journal of Volcanology and Geothermal Research 353:11-17. https://doi.org/10.1016/j.jvolgeores.2018.01.020.
Easdale, M. H., O. Bruzzone, P. Mapfumo, and P. Tittonell. 2018. Phases or regimes? Revisiting NDVI trends as proxies for land degradation. Land Degradation and Development 29(3):433-445. https://doi.org/10.1002/ldr.2871.
Easdale, M. H., F. Umaña, F. Raffo, C. Fariña, and O. Bruzzone. 2019. Evaluación de pastizales patagónicos con imágenes de satélites y de vehículos aéreos no tripulados. Ecología Austral 29(3):306-314. https://doi.org/10.25260/ea.19.29.3.0.791.
Easdale, M. H., and M. R. Aguiar. 2012. Regional forage production assessment in arid and semi-arid rangelands - A step towards social-ecological analysis. Journal of Arid Environments 83:35-44. https://doi.org/10.1016/j.jaridenv.2012.03.002.
Easdale, M. H., D. Perri, and O. A. Bruzzone. 2022. Arid and semiarid rangeland responses to non-stationary temporal dynamics of environmental drivers. Remote Sensing Applications: Society and Environment 27:100796. https://doi.org/10.1016/j.rsase.2022.100796.
Easdale, M. H., V. L. Martin‐Albarracin, D. V. Perri, D. R. López, and O. A. Bruzzone. 2024. Tracking floristic archetypes of Patagonian steppes. Applied Vegetation Science 27(1):e12769. https://doi.org/10.1111/avsc.12769.
Elissalde, N., J. M. Escobar, and V. Nakamatsu. 2002. Inventario y Evaluación De Pastizales Naturales De La Zona Árida y Semiárida De La Patagonia, EEA INTA Chubut, PAN-SDSyPA-GTZ. Pp. 41.
Gaitán, J. J., D. Bran, G. Oliva, F. T. Maestre, M. R. Aguiar, E. Jobbágy, G. Buono, D. Ferrante, V. Nakamatsu, G. Ciari, and J. Salomone. 2014. Plant species richness and shrub cover attenuate drought effects on ecosystem functioning across Patagonian rangelands. Biology Letters 10(10):20140673. https://doi.org/10.1098/rsbl.2014.0673.
Gaitán, J. J., D. E. Bran, G. E. Oliva, M. R. Aguiar, G. G. Buono, D. Ferrante, V. Nakamatsu, G. Ciari, J. M. Salomone, V. Massara, and G. G. Martínez. 2018. Aridity and overgrazing have convergent effects on ecosystem structure and functioning in Patagonian rangelands. Land Degradation and Development 29(2):210-218. https://doi.org/10.1002/ldr.2694.
Giraudo, C., and L. Villar. 2010. Manejo nutricional de la majada para la producción de lana y carne. Pp. 15-38 en J. Mueller and M. Cueto (eds.). Actualización en producción ovina. INTA EEA Bariloche.
Golluscio, R. A., V. A. Deregibus, and J. M. Paruelo. 1998. Sustainability and range management in the Patagonian steppes. Ecología Austral 8(02):265-284.
Golluscio, R. 2009. Receptividad ganadera: marco teórico y aplicaciones prácticas. Ecología Austral 19:215-232.
Golluscio, R. A., M. E. Román, A. Cesa, D. Rodano, H. Bottaro, M. I. Nieto, A. Betelú, and L. A. Golluscio. 2010. Aboriginal settlements of arid Patagonia: Preserving bio-or sociodiversity? The case of the Mapuche pastoral Cushamen Reserve. Journal of Arid Environments 74(10):1329-1339. https://doi.org/10.1016/j.jaridenv.2010.05.012.
Hunt Jr., E.R., and B. A. Miyake. 2006. Comparison of stocking rates from remote sensing and geospatial data. Rangeland Ecology and Management 59(1):11-18. https://doi.org/10.2111/04-177r.1.
Irisarri, J. G. N., M. Oesterheld, J. M. Paruelo, and M. A. Texeira. 2012. Patterns and controls of above-ground net primary production in meadows of Patagonia. A remote sensing approach. Journal of Vegetation Science 23(1):114-126. https://doi.org/10.1111/j.1654-1103.2011.01326.x.
Jobbágy, E. G., O. E. Sala, and J. M. Paruelo. 2002. Patterns and controls of primary production in the Patagonian steppe: a remote sensing approach. Ecology 83(2):307-319. https://doi.org/10.1890/0012-9658(2002)083[0307:pacopp]2.0.co;2.
Kröpf, A. I., V.A. Deregibus, and G. A. Cecchi. 2015. Un modelo de estados y transiciones para el Monte oriental rionegrino. Phyton 84(2):390-396. https://doi.org/10.32604/phyton.2015.84.390.
López, D. R., L. Cavallero, M. A. Brizuela, and M. R. Aguiar. 2011. Ecosystemic structural–functional approach of the state and transition model. Applied Vegetation Science 14(1):6-16. https://doi.org/10.1111/j.1654-109x.2010.01095.x.
López, D. R., M. A. Brizuela, P. Willems, M. R. Aguiar, G. Siffredi, and D. Bran. 2013. Linking ecosystem resistance, resilience, and stability in steppes of North Patagonia. Ecological Indicators 24:1-11. https://doi.org/10.1016/j.ecolind.2012.05.014.
Ludwig, J. A., and D. J. Tongway. 1995. Spatial organisation of landscapes and its function in semi-arid woodlands, Australia. Landscape Ecology 10:51-63. https://doi.org/10.1007/bf00158553.
Ludwig, J. A., B. P. Wilcox, D. D. Breshears, D. J. Tongway, and A. C. Imeson. 2005. Vegetation patches and runoff–erosion as interacting ecohydrological processes in semiarid landscapes. Ecology 86(2):288-297. https://doi.org/10.1890/03-0569.
McNaughton, S. J., M. Oesterheld, D. A. Frank, and K. J. Williams. 1989. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341:142-144. https://doi.org/10.1038/341142a0.
Monteith, J. L. 1972. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology 9(3):747-766. https://doi.org/10.2307/2401901.
Nakamatsu, V., M. Lagarrigue, M. Locattelli, M. Sendin, N. Elissalde, and J. Escobar. 1998. Disponibilidad de forraje estimada a través del valor pastoral en zonas áridas del Chubut (Patagonia). Revista Argentina de Producción Animal 8(1):188.
Oesterheld, M., O. E. Sala, and S. J. McNaughton. 1992. Effect of animal husbandry on herbivore-carrying capacity at a regional scale. Nature 356(6366):234-236. https://doi.org/10.1038/356234a0.
Oliva, G., D. Bran, J. Gaitán, D. Ferrante, V. Massara, G. G. Martínez, E. Adema, M. Enrique, E. Domínguez, and P. Paredes. 2019. Monitoring drylands: The MARAS system. Journal of Arid Environments 161:55-63. https://doi.org/10.1016/j.jaridenv.2018.10.004.
Oñatibia, G. R., and M. R. Aguiar. 2016. Continuous moderate grazing management promotes biomass production in Patagonian arid rangelands. Journal of Arid Environments 125:73-79. https://doi.org/10.1016/j.jaridenv.2015.10.005.
Ormaechea, S. G., P. Peri, P. Cipriotti, and R. Distel. 2019. El cuadro de pastoreo en los sistemas extensivos de Patagonia Sur. Percepción y manejo de la heterogeneidad. Ecología Austral 29:174-184. https://doi.org/10.25260/ea.19.29.2.0.829.
Paruelo, J. M., M. R. Aguiar, R. A. Golluscio, R. J. León, and G. Pujol. 1993. Environmental controls of NDVI dynamics in Patagonia based on NOAA‐AVHRR satellite data. Journal of Vegetation Science 4(3):425-428. https://doi.org/10.2307/3235602
Paruelo, J. M., E. G. Jobbágy, O. E. Sala, W. K. Lauenroth, and I. C. Burke. 1998a. Functional and structural convergence of temperate grassland and shrubland ecosystems. Ecological Applications 8(1):194-206. https://doi.org/10.1890/1051-0761(1998)008[0194:fascot]2.0.co;2.
Paruelo, J. M., E. G. Jobbágy, and O. E. Sala. 1998b. Biozones of patagonia (Argentina). Ecología Austral 8(02):145-153.
Paruelo, J. M., R. A. Golluscio, J. P. Guerschman, A. Cesa, V. V. Jouve, and M. F. Garbulsky. 2004. Regional scale relationships between ecosystem structure and functioning: the case of the Patagonian steppes. Global Ecology and Biogeography 13(5):385-395. https://doi.org/10.1111/j.1466-822x.2004.00118.x.
Peri, P. L., B. Ladd, R. G. Lasagno, and G. M. Pastur. 2016. The effects of land management (grazing intensity) vs. the effects of topography, soil properties, vegetation type, and climate on soil carbon concentration in Southern Patagonia. Journal of Arid Environments 134:73-78. https://doi.org/10.1016/j.jaridenv.2016.06.017.
Schwarz, G. 1978. Estimating the dimension of a model. The Annals of Statistics 6:461-464. https://doi.org/10.1214/aos/1176344136.
Siffredi, G. L., F. Boggio, H. Giorgetti, J. A. Ayesa, A. Kröpfl, and J. M. Alvarez. 2013. Guía para la evaluación de pastizales, para las áreas ecológicas de Sierras y Mesetas Occidentales y de Monte de Patagonia Norte. Ediciones INTA. Pp. 69.
Soriano, A., and J. M. Paruelo. 1992. Biozones: vegetation units defined by functional characters identifiable with the aid of satellite sensor images. Global Ecology and Biogeography Letters 2(3):82-89. https://doi.org/10.2307/2997510.
Tongway, D. J., and J. A. Ludwig. 1994. Small-scale resource heterogeneity in semi-arid landscapes. Pacific Conservation Biology 1(3):201-208. https://doi.org/10.1071/pc940201.
Verón, S. R., and J. M. Paruelo. 2010. Desertification alters the response of vegetation to changes in precipitation. Journal of Applied Ecology 47(6):1233-1241. https://doi.org/10.1111/j.1365-2664.2010.01883.x.
Villa, M. V. E. D., P. M. Cristiano, M. Easdale, and O. A. Bruzzone. 2023. Archetypal classification of vegetation dynamics of a humid subtropical forest region from North-East Argentina. Remote Sensing Applications: Society and Environment 30:100966. https://doi.org/10.1016/j.rsase.2023.100966.
Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, and S. J. Van Der Walt. 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods 17(3):261-272. https://doi.org/10.1038/s41592-020-0772-5.
Westoby, M., B. Walker, and I. Noy-Meir. 1989. Opportunistic management for rangelands not at equilibrium. Rangeland Ecology and Management/Journal of Range Management Archives 42(4):266-274. https://doi.org/10.2307/3899492.
Yengoh, G. T., D. L. Dent, L. Olsson, A. Tengberg, and C. Tucker. 2014. The use of the normalized difference vegetation index (NDVI) to assess land degradation at multiple scales: A review of the current status, future trends and practical considerations. Springer, USA. https://doi.org/10.1007/978-3-319-24112-8_4.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Marcos H. Easdale, Daniel A. Castillo, María V. L. Aramayo, Mario E. Sello, Fernando Umaña, Rafael A. Maddio, Daiana V. Perri, Clara Fariña, Octavio A. Bruzzone
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain their rights as follows: 1) by granting the journal the right to its first publication, and 2) by registering the published article with a Creative Commons Attribution License (CC-BY 4.0), which allows authors and third parties to view and use it as long as they clearly mention its origin (citation or reference, including authorship and first publication in this journal). Authors can make other non-exclusive distribution agreements as long as they clearly indicate their origin and are encouraged to widely share and disseminate the published version of their work.