Anaerobically mineralized nitrogen as a potential indicator of the activity and abundance of mycorrhizal fungi in Mollisols

Authors

  • Gisela V. García Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata. Mar del Plata, Buenos Aires, Argentina
  • Fernanda Covacevich Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones en Biodiversidad y Biotecnología-Fundación para las Investigaciones Biológicas Aplicadas
  • Silvina San Martino Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata. Mar del Plata, Buenos Aires, Argentina
  • Nicolás Wyngaard Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata. Mar del Plata, Buenos Aires, Argentina
  • Nahuel Reussi Calvo Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata. Mar del Plata, Buenos Aires, Argentina
  • Guillermo Alberto Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata. Mar del Plata, Buenos Aires, Argentina

DOI:

https://doi.org/10.25260/EA.24.34.2.0.2282

Keywords:

soil health indicator, easily extractable glomalin-related soil proteins, spores of mycorrhizal fungi, soil organic carbon, particulate organic carbon, aggregate stability, colonized roots with mycorrhizal fungi

Abstract

Anaerobically mineralized nitrogen (AN) is a suitable soil health indicator. The AN is sensitive to soil use changes and is related to soil and particulate organic carbon and aggregate stability. This work aims to evaluate the relationship between AN and 1) easily extractable glomalin-related soil proteins; 2) abundance of arbuscular mycorrhizal fungi measured by the number of arbuscular mycorrhizal fungi spores, and 3) arbuscular mycorrhizal fungi activity (root colonization). Soil samples were taken at depths of 0-5 and 5-20 cm from cultivated and uncultivated plots throughout the southeastern province of Buenos Aires. Anaerobically mineralized nitrogen, soil organic carbon, particulate organic carbon, aggregate stability, easily extracted glomalin-related soil proteins and the logarithm of the number of arbuscular mycorrhizal fungi spores (log spores) at 0-5, 5-20 and 0-20 cm depths were determined. In wheat roots, the percentages of total infection and arbuscules at 0-20 cm were measured. At all depths, AN was positively correlated to easily extractable glomalin-related soil proteins (r=0.34-0.65), which is an indicator of arbuscular mycorrhizal fungi activity and abundance. Likewise, AN was positively related to log-spores (r=0.58-0.78), which is an indicator of arbuscular mycorrhizal fungi abundance. However, AN was not related to root colonization (the percentages of total infection and arbuscules) that manifests the activity of arbuscular mycorrhizal fungi at a specific moment. Thus, anaerobically mineralized nitrogen would be an indicator of mid- to long-term changes in arbuscular mycorrhizal fungi abundance and activity (easily extractable glomalin-related soil proteins and log-spores) resulting from soil use. Consequently, the AN would allow monitoring an important aspect of soil microbiological health associated with arbuscular mycorrhizal fungi. However, it is necessary to evaluate the relationships studied in this work in a wider range of soil situations.

References

Bedini, S., L. Avio, E. Argese, and M. Giovannetti. 2007. Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. Agric Ecosyst Environ 120:463-466. https://doi.org/10.1016/j.agee.2006.09.010.

Bedini, S., E. Pellegrino, L. Avio, S. Pellegrini, P. Bazzoffi, et al. 2009. Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 4:1491-1496. https://doi.org/10.1016/j.soilbio.2009.04.005.

Bethlenfalvay, G. J., and R. G. Linderman. 1992. Mycorrhizae in Sustainable Agriculture. ASA Special Publication 54. ASA-CSSA-SSSA, Madison, WI, USA. https://doi.org/10.2134/asaspecpub54.

Brundrett, M. C. 2008. Mycorrhizal Associations: The Web Resource. Section 10. Methods for Identifying Mycorrhizas. URL: mycorrhizas.info/method.html.

Bünemann, E. K., G. Bongiorno, Z. Bai, R. E. Creamer, G. D. Deyn, et al. 2018. Soil quality - A critical review. Soil Biol Biochem 120:105-125. https://doi.org/10.1016/j.soilbio.2018.01.030.

Cambardella, C. A., and E. T. Elliott. 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci Soc Am J 56:777-783. https://doi.org/10.2136/sssaj1992.03615995005600030017x.

Carciochi, W. D., N. Wyngaard, G. A. Divito, M. L. Cabrera, N. I. Reussi-Calvo, et al. 2018. A comparison of indexes to estimate corn S uptake and S mineralization in the field. Biol Fertility Soils 54:349-362. https://doi.org/10.1007/s00374-018-1266-9.

Chenu, C., and D. Cosentino. 2007. Microbial regulation of soil structural dynamics. Pp. 37-70 in K. Ritz and I. Young (eds.). The Architecture and Biology of Soils: Life in Inner Space. CABI, Wallingford, Oxfordshire, UK. https://doi.org/10.1079/9781845935320.0037.

Covacevich, F., and F. V. Consolo. 2014. Manual de protocolos. Herramientas para el estudio y manipulación de hongos micorrícicos arbusculares y Trichoderma. Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina.

Covacevich, F., and S. Vargas-Gil. 2014. Aporte de los microorganismos edáficos a la nutrición vegetal. Pp. 101-129 in H. E. Echeverría and F. O. García (eds.). Fertilidad de suelos y fertilización de cultivos, Second ed. Ediciones INTA, Buenos Aires, Argentina.

Covacevich, F., M. A. Marino, and H. E. Echeverría. 2006. The phosphorus source determines the arbuscular mycorrhizal potential and the native mycorrhizal colonization of tall fescue and wheatgrass. Europ J Soil Biol 42:127-138. https://doi.org/10.1016/j.ejsobi.2005.12.002.

Covacevich, F., M. Eyherabide, H. Sainz-Rozas, and H. E. Echeverría. 2012. Características químicas determinan la capacidad micotrófica arbuscular de suelos agrícolas y prístinos de Buenos Aires (Argentina). Ciencia del Suelo 30:119-128.

Domínguez, G. F., G. V. García, G. A. Studdert, M. A. Agostini, S. N. Tourn, et al. 2016. Is anaerobic mineralizable nitrogen suitable as soil quality/health indicator? Spanish J Soil Sci 6:82-97. https://doi.org/10.3232/SJSS.2016.V6.N2.00.

Fine, A. K., H. M. Van Es, and R. R. Schindelbeck. 2017. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci Soc Am J 81:589-601. https://doi.org/10.2136/sssaj2016.09.0286.

Fokom, R., S. Adamou, M. C. Teugwa, A. D. Begoude-Boyogueno, W. L. Nana, et al. 2012. Glomalin related soil protein, carbon, nitrogen and soil aggregate stability as affected by land use variation in the humid forest zone of south Cameroon. Soil Tillage Res 120:69-75. https://doi.org/10.1016/j.still.2011.11.004.

Franzluebbers, A. J., and J. A. Stuedemann. 2009. Soil profile organic carbon and total nitrogen during 12 years of pasture management in the Southern Piedmont USA. Agric Ecosyst Environ 129:28-36. https://doi.org./10.1016/j.agee.2008.06.013.

García, G. V., S. N. Tourn, M. F. Roldán, M. Mandiola, and G. A. Studdert. 2020a. Simplifying the determination of aggregate stability indicators of Mollisols. Comm. Soil Sci Plant Anal 51:481-490. https://doi.org/ 10.1080/00103624.2020.1717513.

García, G. V., N. Wyngaard, N. I. Reussi-Calvo, S. San-Martino, F. Covacevich, and G. A. Studdert. 2020b. Soil survey reveals a positive relationship between aggregate stability and anaerobic mineralizable nitrogen. Ecol Ind 117:106640. https://doi.org/10.1016/j.ecolind.2020.106640.

García, G. V., M. E. Campos, N. Wyngaard, N. I. Reussi-Calvo, S. San-Martino, et al. 2021. Anaerobically mineralized nitrogen within macroaggregates as a soil health indicator. Catena 198:105034. https://doi.org/10.1016/j.catena.2020.105034.

He, J. D., G. G. Chi, Y. N. Zou, B. Shu, Q. S. Wu, et al. 2020. Contribution of glomalin-related soil proteins to soil organic carbon in trifoliate orange. Appl Soil Ecol 154:103592. https://doi.org/10.1016/j.apsoil.2020.103592.

Hurisso, T. T., D. J. Moebius-Clune, S. W. Culman, B. N. Moebius-Clune, J. E. Thies, et al. 2018. Soil protein as a rapid soil health indicator of potentially available organic nitrogen. Agric Environ Lett 3:180006. https://doi.org/10.2134/ael2018.02.0006.

Jamiołkowska, A., A. Księżniak, A. Gałązka, B. Hetman, M. Kopacki, et al. 2017. Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: a review. Int Agrophys 32:133-140. https://doi.org/10.1515/intag-2016-0090.

Keeney, D. R. 1982. Nitrogen-availability indexes. Pp. 711-733 in A. L. Page (ed.). Methods of Soil Analysis. Part 2. Chemical and microbiological properties. Second ed. Agron Monogr 9. Am Soc Agron and Soil Sci Soc Am. Madison, WI, USA. https://doi.org/10.2134/agronmonogr9.2.2ed.c35.

Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel. 2006. World map of the Köppen-Geiger climate classification updated. Meteorologistche Zeitschrift 15:259-263. https://doi.org/10.1127/0941-2948/2006/0130.

Liu, H., X. Wang, C. Liang, Z. Ai, Y. Wu, et al. 2020. Glomalin-related soil protein affects soil aggregation and recovery of soil nutrient following natural revegetation on the Loess Plateau. Geoderma 357:113921. https://doi.org/10.1016/j.geoderma.2019.113921.

Lozano-Sánchez, J. D., I. Armbrecht, and J. Montoya-Lerma. 2015. Hongos formadores de micorrizas arbusculares y su efecto sobre la estructura de los suelos en fincas con manejos agroecológicos e intensivos. Acta Agron 64:289-296. https://doi.org/10.15446/acag.v64n4.46045.

Miller, R. M., and J. D. Jastrow. 2000. Mycorrhizal fungi influence soil structure. Pp. 3-18 in Y. Kapulnik and D. D. Douds Jr. (eds.). Arbuscular mycorrhizas: physiology and function. Kluwer Academic, Dordrecht, Netherland. https://doi.org/10.1007/978-94-017-0776-3_1.

Nautiyal, P., R. Rajput, D. Pandey, K. Arunachalam, and A. Arunachalam. 2019. Role of glomalin in soil carbon storage and its variation across land uses in temperate Himalayan regime. Biocatal Agric Biotech 21:101311. https://doi.org/10.1016/j.bcab.2019.101311.

Nelson, D. W., and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. Pp. 539-579 in A. L. Page (ed.). Methods of Soil Analysis. Part 2. Chemical and microbiological properties. Second ed. Agron Monogr 9. Am Soc Agron and Soil Sci Soc Am. Madison, WI, USA. https://doi.org/10.2134/agronmonogr9.2.2ed.c29.

Nichols, K. A., and S. F. Wright. 2004. Contributions of fungi to soil organic matter in agroecosystems. Pp. 179-198 in K. Magdoff and R. R. Weil (eds.). Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, FL, USA. https://doi.org/10.1201/9780203496374.ch6.

Pagano, M. C., N. F. Duarte, and E. J. Azevedo-Corrêa. 2020. Effect of crop and grassland management on mycorrhizal fungi and soil aggregation. Appl Soil Ecol 147:103385. https://doi.org/10.1016/j.apsoil.2019.103385.

R Core Team. 2018. R: a language and environment for statistical computing (v. 3.5.2). R Foundation for Statistical Computing, Vienna, Austria. URL: r-project.org.

Reussi-Calvo, N. I., H. Sainz-Rozas, H. E. Echeverría, and A. Berardo. 2013. Contribution of anaerobically incubated nitrogen to the diagnosis of nitrogen status in spring wheat. Agron J 105:1-8. https://doi.org/10.2134/agronj2012.0287.

Rillig, M. C., S. F. Wright, K. A. Nichols, W. F. Schmidt, and M. S. Torn. 2001. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167-177. https://doi.org/10.1023/A:1010364221169.

Rivero, C., S. N. Tourn, G. V. García, C. C. Videla, G. F. Domínguez, and G. A. Studdert. 2020. Nitrogen mineralized in anaerobiosis as indicator of soil aggregate stability. Agron J 112:1-16. https://doi.org/10.1002/agj2.20056.

Rosier, C. L., A. T. Hoye, and M. C. Rillig. 2006. Glomalin-related soil protein: Assessment of current detection and quantification tools. Soil Biol Biochem 38:2205-2211. https://doi.org/10.1016/j.soilbio.2006.01.021.

Šarapatka, B., D. P. Alvarado-Solano, and D. Čižmár. 2019. Can glomalin content be used as an indicator for erosion damage to soil and related changes in organic matter characteristics and nutrients? Catena 181:104078. https://doi.org/10.1016/j.catena.2019.104078.

Sigma-Aldrich. 2019. Bradford reagent. Technical Bulletin. URL: tinyurl.com/3nc5aas4.

Singh, A. K., A. Rai, and N. Singh. 2016. Effect of long-term land use systems on fractions of glomalin and soil organic carbon in the Indo-Gangetic plain. Geoderma 277:41-50. https://doi.org/10.1016/j.geoderma.2016.05.004.

Six, J., H. Bossuyt, S. Degryze, and K. Denef. 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79:7-31. https://doi.org/10.1016/j.still.2004.03.008.

Soil Survey Staff. 2014. Keys to soil taxonomy. USDA, Natural Resources Conservation Service. Washington, DC, USA.

Thougnon-Islas, A. J., M. Eyherabide, H. E. Echeverría, H. R. Sainz-Rozas, and F. Covacevich. 2014. Capacidad micotrófica y eficiencia de consorcios con hongos micorrícicos nativos de suelos de la provincia de Buenos Aires con manejo contrastante. Rev Argent Microbiol 46:133-143. https://doi.org/10.1016/S0325-7541(14)70062-8.

Thougnon-Islas, A. J., K. Hernández-Guijarro, M. Eyherabide, H. Sainz-Rozas, H. E. Echeverría, et al. 2016. Can soil properties and agricultural land use affect arbuscular mycorrhizal fungal communities indigenous from the Argentinean Pampas soils? Appl Soil Ecol 101:47-56. https://doi.org/10.1016/j.apsoil.2016.01.005.

Wright, S. F., and A. Upadhyaya. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575-586. https://doi.org/10.1097/00010694-199609000-00003.

Wright, S. F., and A. Upadhyaya. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97-107. https://doi.org/10.1023/A:1004347701584.

Wright, S. F., M. Franke-Snyder, J. B. Morton, and A. Upadhyaya. 1996. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193-203. https://doi.org/10.1007/BF00012053.

Zadoks, J. C., T. T. Chang, and C. F. Konzak. 1974. A decimal code for the growth stages of cereals. Weed Res 14:415-421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x.

Anaerobically mineralized nitrogen as a potential indicator of the activity and abundance of mycorrhizal fungi in Mollisols

Downloads

Published

2024-05-16

How to Cite

García, G. V., Covacevich, F., San Martino, S., Wyngaard, N., Reussi Calvo, N. I., & Studdert, G. A. (2024). Anaerobically mineralized nitrogen as a potential indicator of the activity and abundance of mycorrhizal fungi in Mollisols. Ecología Austral, 34(2), 228–239. https://doi.org/10.25260/EA.24.34.2.0.2282