Mechanical control of invasive Pyracantha shrubs under three felling frequencies

Authors

  • Daniel Renison Centro de Ecología y Recursos Naturales Renovables Dr. Ricardo Luti. Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de Córdoba. Córdoba, Argentina. Instituto de Investigaciones Biológicas y Tecnológicas (CONICET-Universidad Nacional de Córdoba). Córdoba, Argentina. ONG Ecosistemas Argentinos
  • Iván Barberá Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-Universidad Nacional del Comahue). Río Negro, Argentina
  • Daihana S. Argibay Centro de Ecología y Recursos Naturales Renovables Dr. Ricardo Luti. Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de Córdoba. Córdoba, Argentina. Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba). Córdoba Argentina
  • Matías Biraben Keck Science Department, Pitzer College. California, USA
  • Ana M. Cingolani ONG Ecosistemas Argentinos. Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba). Córdoba Argentina

DOI:

https://doi.org/10.25260/EA.23.33.3.0.2306

Keywords:

invasion, non-native, cost, grateus, Pyracantha angustifolia, Pyracantha atalantioides

Abstract

Mechanical control is widely used to reduce the invasion of exotic shrubs and the effort must persist until regrowth is almost nil. A regime of frequent felling implies more intense short term effort, but should weaken the plant faster and could imply a lower long term effort. Here we propose to find the best felling frequency. In the mountains of Córdoba, Argentina, we selected 192 shrubs of Pyracantha angustifolia and P. aff. atalantioides, we measured their sizes, felled them at the base, applied three treatments of regrowth felling frequencies: annual, biennial and at year 4, and measured all felling times. Shrub survival in year 5 was 36, 83 and 91% for the annual, biennial and at year 4 felling treatments, respectively. The average height before felling the shrubs was 323±13 cm, and after a year, the regrowth measured almost half. For the annual felling treatment, regrowth height was successively lower. For the treatment of biennial felling, the height of regrowth reached 84 and 88% of the original height in years 2 and 4, respectively. For the felling treatment in year 4, the shrubs reached a height of 351±13 cm, exceeding their pre-felling height by 20 cm. The number of fruits for annual and biennial felling treatment was 0 and 33 fruits.shrub-1.year-1, respectively, and in the felling treatment in year 4, fruiting increased from 0 to 565±85 fruits.shrub-1.year-1 from year 1 to year 4. Only the annual felling treatment presented a year-to-year reduction in felling time. We conclude that the mechanical control of Pyracantha should consider frequent regrowth felling.

References

Ansley, R. J., H. T. Wiedemann, M. J. Castellano, and J. E. Slosser. 2006. Herbaceous restoration of Juniper dominated grasslands with chaining and fire. Rangeland Ecology and Management 50:171-178. https://doi.org/10.2111/05-095R1.1.

Argañaraz, J., A. M. Cingolani, L. M. Bellis, and M. A. Giorgis. 2020. Fire incidence along an elevational gradient in the mountains of central Argentina. Ecología Austral 30:268-281. https://doi.org/10.25260/EA.20.30.2.0.1054.

Argibay, D. S., and D. Renison. 2018. Efecto del fuego y la ganadería en bosques de Polylepis australis (Rosaceae) a lo largo de un gradiente altitudinal en las montañas del centro de la Argentina. Bosque (Valdivia) 39:145-150. https://doi.org/10.4067/S0717-92002018000100145.

Bernasconi Salazar, J., A. Cora, M. Karlin, and L. González. 2018. Eficiencia del anillado y profundidad de corte óptima para el control de dos especies leñosas exóticas invasoras del Chaco Serrano argentino. AgriScientia 35:11-18. https://doi.org/10.31047/1668.298x.v35.n2.18224.

Bory, G., M. D. Sidibe, and D. Clair-Maczulajtys. 1991. Effects of cutting back on the carbohydrate and lipid reserves in the tree of heaven (Ailanthus glandulosa Desf Simaroubaceae). Ann Sci For 48:1-13. https://doi.org/10.1051/forest:19910101.

Cameron, A. C., and P. K. Trivedi. 2013. Regression analysis of count data. 2nd Edition. Cambridge University Press. Pp. 136-139. https://doi.org/10.1017/CBO9781139013567.

Capó, E. A., R. Aguilar, and D. Renison. 2016. Livestock reduces juvenile tree growth of alien invasive species with a minimal effect on natives: a field experiment using exclosures. Biological Invasions 18:2943-2950. https://doi.org/10.1007/s10530-016-1185-3.

Chari, L. D., G. D. Martin, S. L. Steenhuisen, L. D. Adams, and V. R. Clark. 2020. Biology of invasive plants 1. Pyracantha angustifolia (Franch.) C.K. Schneid. Invasive Plant Science and Management 13:120-142. https://doi.org/10.1017/inp.2020.24.

Cingolani, A. M., M. A. Giorgis, L. E. Hoyos, and M. Cabido. 2022. La vegetación de las montañas de Córdoba (Argentina) a comienzos del siglo XXI: un mapa base para el ordenamiento territorial. Boletín de la Sociedad Argentina de Botánica 57:65-100. https://doi.org/10.31055/1851.2372.v57.n1.34924.

Clewell, A. F., and J. Aronson. 2007. Ecological restoration: principles, values, and structure of an emerging profession. Island Press. Pp. 216.

Clewley, G. D., R. Eschen, R. H. Shaw, and D. J. Wright. 2012. The effectiveness of classical biological control of invasive plants. Journal of Applied Ecology 49:1287-1295. https://doi.org/10.1111/j.1365-2664.2012.02209.x.

Colladon, L. 2014. Anuario Pluviométrico 1992/93 - 2011/12, Cuenca del Río San Antonio. Sistema del Río Suquía - Provincia de Córdoba. Primera ed. Instituto Nacional del Agua y Centro de Investigaciones de la Región Semiárida (CIRSA), Córdoba, Argentina.

Constán-Nava, S., A. Bonet, E. Pastor, and M. J. Lledó. 2010. Long-term control of the invasive tree Ailanthus altissima: Insights from Mediterranean protected forests. Forest Ecology and Management 260:1058-1064. https://doi.org/10.1016/j.foreco.2010.06.030.

Cuevas, Y. A., and Zalba S. M. 2009. Control de Pinos invasores en el Parque Provincial Ernesto Tornsquist (Buenos Aires): Áreas priotitarias y análisis de costos. BioScriba 2:76-89.

Egolf, D. R., and A. O. Andrick. 1995. A checklist of Pyracantha cultivars. U.S. National Arboretum Contribution. Beltsville, MD: U.S. Department of Agriculture–Agricultural Research Service. Pp. 91. https://doi.org/10.5962/bhl.title.58687.

Dunn, K. P., and G. K. Smyth. 1996. Randomized quantile residuals. Journal of Computational and Graphical Statistics 5:1-10. https://doi.org/10.2307/1390802.

Fernández, R. D., S. J. Ceballos, R, Aragón, A. Malizia, L. Montti, J. I. Whitworth-Hulse, P. Castro-Díez, and H. R. Grau. 2020. A Global Review of Ligustrum lucidum (Oleaceae) Invasion. The Botanical Review 86:93-118. https://doi.org/10.1007/s12229-020-09228-w.

Giorgis, M. A., and P. Tecco. 2014. Árboles y arbustos invasores de la provincia de Córdoba (Argentina): una contribución a la sistematización de bases de datos globales. Bol Soc Argent Bot 49:581-603. https://doi.org/10.31055/1851.2372.v49.n4.9991.

Giorgis, M. A., M. V. Palchetii, R. Moreno, M. Cabido, J. O. Chiapella, and A. M. Cingolani. 2021. Flora vascular de las montañas de Córdoba (Argentina): características y distribución de las especies a través del gradiente altitudinal. Bol Soc Argent Bot 56:1-19. https://doi.org/10.31055/1851.2372.v56.n3.30355.

Gurvich, D. E., L. Enrico, and A. M. Cingolani. 2005. Linking plant functional traits with post-fire sprouting vigour in woody species in central Argentina. Austral Ecology 30:768-796. https://doi.org/10.1111/j.1442-9993.2005.01529.x.

Hartig, F. 2022. DHARMa: Residual diagnostics for hierarchical (Multi-Level / Mixed) regression Models. R package version 0.4.6. URL: CRAN.R-project.org/package=DHARMa.

Herrero, M. L., R. C. Torres, and D. Renison. 2016. Do wildfires promote woody species invasion in a fire-adapted ecosystem? Post-fire resprouting of native and non-native woody plants in central Argentina. Environmental Management 57:308-317. https://doi.org/10.1007/s00267-015-0616-8.

Holloran, P., A. Mackenzie, S. Farrell, and D. Johnson. 2004. The weed workers’ handbook. Richmond, CA: California Invasive Plant Council.

Hultine, K. R., D. Dehn, S. E. Bush, K. Achara, C. D’Antonio, T. L. Dudley, J. Healey, J. B. Hull, D. E. Koepke, R. W. Long, and D. L. Potts. 2021. Episodic defoliation rapidly reduces starch but not soluble sugars in an invasive shrub, Tamarix spp. Botany 108:1343-1353. https://doi.org/10.1002/ajb2.1711.

Karlin, M., A. Cora, J. Bernasconi Salazar, and F. Ontibero. 2022. Sobrevida post-anillado de tres especies exóticas invasoras arbóreas de las Sierras de Córdoba (Argentina). Quebracho 30:31-37.

Kays, J. S., and C. D. Canham. 1991. Effects of time and frequency of cutting on hardwood root reserves and sprout growth. Forest Science 37:524-539.

Kettenring, K. M., and C. R. Adams. 2011. Lessons learned from invasive plant control experiments: a systematic review and meta-analysis. Journal of Applied Ecology 48:970-979. https://doi.org/10.1111/j.1365-2664.2011.01979.x.

Mack, R. N., D. Simberloff, W. Mark, L. H. Evans, M. Clout, and F. Bazzaz. 2000. Invasiones biológicas: Causas, epidemiología, consecuencias globales y control. Tópicos en Ecología 5:1-19.

Marcora, P., I. Hensen, D. Renison, P. Seltmann, and K. Wesche. 2008. The performance of Polylepis australis trees along their entire altitudinal range: implications of climate change for their conservation. Diversity and Distributions 14:630-636. https://doi.org/10.1111/j.1472-4642.2007.00455.x.

Matula, R., M. Šrámek, J. Kvasnica, B. Uherková, J. Slepička, M. Matoušková, E. Kutchartt, and M. Svátek. 2019. Pre-disturbance tree size, sprouting vigour and competition drive the survival and growth of resprouting trees. Forest Ecology and Management 446:71-79. https://doi.org/10.1016/j.foreco.2019.05.012.

Matzek, V., M. Pujalet, and S. Cresci. 2015. What managers want from invasive species research versus what they get. Conservation Letters 8:33-40 https://doi.org/10.1111/conl.12119.

McNaughton, S. J. 1983. Compensatory plant growth as a response to herbivory. Oikos 40:329-336. https://doi.org/10.2307/3544305.

Love, J. P., and J. T. Anderson. 2009. Seasonal effects of four control methods on the invasive Morrow’s Honeysuckle (Lonicera morrowii) and initial responses of understory plants in a Southwestern Pennsylvania old field. Restoration Ecology 17:549-559 https://doi.org/10.1111/j.1526-100X.2008.00421.x.

Packham, J. R., D. J. L. Harding, G. M. Hilton, and R. A. Stuttard. 1992. Functional ecology of woodlands and forests. Chapman and Hall, London.

R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: R-project.org.

Ramaswami, G. S., D. Prasad, D. Westcott, S. P. Subuddhi, and R. A. Sukumar. 2014. Addressing the management of a long established invasive shrub: the case of Lantana camara in Indian forests. Indian Forester 140:129-136.

Rathfon, R. A., S. M. Greenler, and M. A. Jenkins. 2021. Effects of prescribed grazing by goats on non-native invasive shrubs and native plant species in a mixed-hardwood forest. Restoration Ecology 29:e13361. https://doi.org/10.1111/rec.13361.

Renison, D., M. L. Herrero, R. C. Torres, R. Suarez, P. Friedlander, S. E. Navarro Ramos, F. Barri, and A. M. Cingolani. 2016. El rol de los voluntariados en la restauración ecológica del centro argentino. Capítulo III. Pp. 55-76 en E. Ceccon and D. Pérez (coords.). Más allá de la ecología de la restauración: perspectivas sociales en América Latina y el Caribe. 1ª edición. Ciudad Autónoma de Buenos Aires. Vázquez Manzini Editores.

Renison, D., A. M. Cingolani, C. Contarde, and D. Guzmán. 2023a. Asistiendo a la reintroducción de vizcachas (Lagostomus maximus): ¿Cómo aumentar el área de pastoreo seguro? Ecología Austral 33:20-29. https://doi.org/10.25260/EA.23.33.1.0.1961.

Renison, D., H. R. Quispe-Melgar, G. A. E. Cuyckens, and A. M. Cingolani. 2023b. Setting large- and medium-sized mammal restoration goals in one of the last mountain Chaco remnants from Central Argentina. Ecological Processes 12:21. https://doi.org/10.1186/s13717-023-00434-z.

Sala, A., D. R. Woodruff, and F. C. Meinzer. 2012. Carbon dynamics in trees: feast or famine? Tree Physiology 32:764-775. https://doi.org/10.1093/treephys/tpr143.

Salazar, J., F. Barri, and G. Cardozo. 2013. Distribución espacial y tasa de invasión de flora exótica en la Reserva Natural de Vaquerías - Provincia de Córdoba (Argentina). Cuadernos de Botánica Ambiental Aplicada 24:3-12.

Sanhueza, C., and S. M. Zalba. 2012. Experimental control of Spanish broom (Spartium junceum) invading natural grasslands. Management of Biological Invasions 3:97-104. https://doi.org/10.3391/mbi.2012.3.2.04.

Snyder, E. 2021. Mechanical control of terrestrial invasives plants. University of New Hampshire - Extension 1-5. URL: tinyurl.com/ydxwdubp.

Tecco, P. A., D. E. Gurvich, S. Díaz, N. Pérez-Harguindeguy, and M. Cabido. 2006. Positive interaction between invasive plants: The influence of Pyracantha angustifolia on the recruitment of native and exotic woody species. Austral Ecology 31:293-300. https://doi.org/10.1111/j.1442-9993.2006.01557.x.

Tecco, P. A., A. I. Pais-Bosch, G. Funes, P. I. Marcora, S. R. Zeballos, M. Cabido, and C. Urcelay. 2016. Mountain invasions on the way: are there climatic constraints for the expansion of alien woody species along an elevation gradient in Argentina? Journal of Plant Ecology 9:380-392. https://doi.org/10.1093/jpe/rtv064.

Valfré-Giorello, T. A., C. R. Torres, F. R. Barri, and D. Renison. 2019. Control mecánico del árbol no nativo Ligustrum lucidum (Oleaceae): supervivencia, regeneración y costos. Bol Soc Argent Bot 54:93-104. https://doi.org/10.31055/1851.2372.v54.n1.23588.

van Wilgen, B. W., and D. M. Richardson. 2014. Challenges and trade-offs in the management of invasive alien trees. Biological Invasions 16:721-734. https://doi.org/10.1007/s10530-013-0615-8.

van Wilgen, B. W., J. R. Wilson, and L. C. Foxcroft. 2020. The extent and effectiveness of alien plant control projects in South Africa. Capítulo 21. Pp. 597-628 en B. W. van Wilgen, J. Measey, D. M. Richardson, J. R. Wilson and T. A. Zengeya (eds.). Biological invasions in South Africa, Springer Open, Berlin, Alemania. https://doi.org/10.1007/978-3-030-32394-3.

Vergara-Tabares, D. L., M. Toledo, E. García, and S. I. Peluc. 2018. Aliens will provide: avian responses to a new temporal resource offered by ornithocorous exotic shrubs. Oecologia 188:173-182. https://doi.org/10.1007/s00442-018-4207-2.

Mechanical control of invasive Pyracantha shrubs under three felling frequencies

Published

2023-12-11

How to Cite

Renison, D., Barberá, I., Argibay, D. S., Biraben, M., & Cingolani, A. M. (2023). Mechanical control of invasive Pyracantha shrubs under three felling frequencies. Ecología Austral, 33(3), 950–961. https://doi.org/10.25260/EA.23.33.3.0.2306