Livestock grazing in natural grasslands in the Dry Chaco: Does herbaceous vegetation change between two grasslands with different grazing pressures?

Authors

  • Patricio Cowper-Coles Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, (FCA UNNE). Corrientes, Argentina
  • Carolina B. Trigo Laboratorio de Ecología Aplicada a la Conservación (LEAC), Facultad de Cs. Naturales, Universidad Nacional de Salta
  • María S. Andrade-Díaz Modelling Human-Environmental Interactions Group, Institute of Geography-Freie Universität Berlin
  • Carlos Gómez Laboratorio de Ecología Aplicada a la Conservación (LEAC), Facultad de Cs. Naturales, Universidad Nacional de Salta. Universidad Católica de Salta (UCASAL). Centro Científico Tecnológico Salta -Jujuy (CCT), Consejo de Investigaciones Científicas y Técnicas (CONICET)
  • Andrés Tálamo Laboratorio de Ecología Aplicada a la Conservación (LEAC), Facultad de Cs. Naturales, Universidad Nacional de Salta. Instituto de Bio y Geociencias del Noroeste Argentino (IBIGEO), Consejo de Investigaciones Científicas y Técnicas (CONICET) y Universidad Nacional de Salta (UNSa). Universidad Católica de Salta (UCASAL)

DOI:

https://doi.org/10.25260/EA.24.34.3.0.2319

Keywords:

paleochannels, disturbance, richness, composition, productivity

Abstract

Livestock grazing represents the largest land use globally and causes impacts that vary according to intensity, evolutionary history and local environmental conditions. In the Dry Chaco, many grasslands were altered, modifying the cover of the species that make up the grasslands, which was significantly reduced in recent years due to inadequate livestock management. The aim of this study was to determine the possible effect of grazing on the herbaceous plant community, for which we estimated and compared the species richness, plant cover of palatable species, species composition and aboveground net primary productivity (ANPP) of grasslands with different intensities of livestock use in Copo National Park. We selected two natural grasslands with different grazing pressures (high and low grazing pressure) and two sites per grassland on five different dates (two dry seasons and three wet seasons). The results showed that there were no statistical differences of the grazing pressures evaluated in the richness and species composition or in the ANPP. However, there were statistically significant differences (P=0.0009) in the cover of palatable species, which was higher in low-pressure grasslands. These changes are associated with an increase in the cover of annual, woody, toxic or unpalatable species in the high-pressure grassland, altering the plant community without changing richness or species composition. On the other hand, ANPP was not significantly affected by different pressures, possibly due to the higher cover of aibe (Elionurus muticus), which is not consumed by cattle in advanced phenological stages. Therefore, the lack of changes in richness, composition and ANPP suggests compatibility between livestock grazing and conservation of the protected area, although monitoring of the cover of palatable species in grasslands under high pressure from livestock use is recommended to avoid degradation.

References

Abril, A., P. Barttfeld, and E. H. Bucher. 2005. The Effect of Fire and Overgrazing Disturbes on Soil Carbon Balance in the Dry Chaco Forest. Forest Ecology and Management 206(1-3):399-405. https://doi.org/10.1016/j.foreco.2004.11.014.

Abril, A., and E. H. Bucher. 2001. Overgrazing and Soil Carbon Dynamics in the Western Chaco of Argentina. Applied Soil Ecology 16(3):243-49. https://doi.org/10.1016/S0929-1393(00)00122-0.

Adamoli, J., E. Sennhauser, J. M. Acero, and A. Rescia. 1990. Stress and Disturbance: Vegetation Dynamics in the Dry Chaco Region of Argentina. Journal of Biogeography 17(4/5):491. https://doi.org/10.2307/2845381.

Altesor, A., G. Piñeiro, F. Lezama, R. B. Jackson, M. Sarasola, and J. M. Paruelo. 2006. Ecosystem Changes Associated with Grazing in Subhumid South American Grasslands. Journal of Vegetation Science 17(3):323-32. https://doi.org/10.1111/j.1654-1103.2006.tb02452.x.

Andrade-Díaz, M. S., M. Piquer-Rodríguez, and G. Baldi. 2023. Conservation Opportunities for Threatened Paleochannel Grasslands in the South American Dry Chaco. Journal for Nature Conservation 71(February):126306. https://doi.org/10.1016/j.jnc.2022.126306.

Asaduzzaman, M., H. Wu, E. Koetz, M. Hopwood, and A. Shepherd. 2022. Phenology and Population Differentiation in Reproductive Plasticity in Feathertop Rhodes Grass (Chloris Virgata Sw.). Agronomy 12(3):736. https://doi.org/10.3390/agronomy12030736.

Baldassini, P., C. Despósito, G. Piñeiro, and J. M. Paruelo. 2018. Silvopastoral Systems of the Chaco Forests: Effects of Trees on Grass Growth. Journal of Arid Environments 156(September):87-95. https://doi.org/10.1016/j.jaridenv.2018.05.008.

Baldassini, P., and J. M. Paruelo. 2020. Sistemas agrícolas y silvopastoriles en el Chaco Semiárido. Impactos sobre la productividad primaria. Ecología Austral 30(1):045-062. https://doi.org/10.25260/EA.20.30.1.0.961.

Baumann, M., C. Israel, M. Piquer-Rodríguez, G. Gavier-Pizarro, J. N. Volante, et al. 2017. Deforestation and Cattle Expansion in the Paraguayan Chaco 1987-2012. Regional Environmental Change 17(4):1179-91. https://doi.org/10.1007/s10113-017-1109-5.

Bravo, S., C. Kunst, A. Gimenez, and G. Moglia. 2001. Fire Regime of a Elionorus Muticus Spreng. Savanna, Western Chaco Region, Argentina. International Journal of Wildland Fire 10(1):65. https://doi.org/10.1071/WF01014.

Bucher, E. H. 1982. Chaco and Caatinga - South American Arid Savannas, Woodlands and Thickets. Pp. 48-79 en B. J. Huntley and B. H. Walker (eds.). Ecology of Tropical Savannas. Ecological Studies. Vol. 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68786-0_4.

Bucher, E. H. 1987. Herbivory in arid and semi-arid regions of Argentina. Revista Chilena de Historia Natural 60(2):265-273.

Cardozo, S., A. Tálamo, and F. Mohr. 2011. Composición, Diversidad y Estructura Del Ensamble de Plantas Leñosas En Dos Paleocauces Con Diferente Intervención Antrópica Del Chaco Semiárido, Argentina. Bosque (Valdivia)32(3):279-86. https://doi.org/10.4067/S0717-92002011000300009.

Chalukian, S. C., A. Belaus, M. S. Bustos, and M. Saravia. 2006. Plan de Manejo Parque Nacional Copo - Versión Final. Delegación Regional Noroeste. Proyecto Conservación de la Biodiversidad APN/GEF/BIRF.

Chaneton, E. J., and J. M. Facelli. 1991. Disturbance Effects on Plant Community Diversity: Spatial Scales and Dominance Hierarchies. Vegetatio 93(2):143-55. https://doi.org/10.1007/BF00033208.

Cingolani, A. M., I. Noy-Meir, D. D. Renison, and M. Cabido. 2008. La ganadería extensiva, ¿es compatible con la conservación de la biodiversidad y de los suelos? Ecología Austral 18(3):253-271. URL: tinyurl.com/335jxffj.

Coria, R. D., C. R. Kunst, and S. J. Bravo. 2021. Un aporte al entendimiento de la lignificación de los pastizales/sabanas del Chaco Semiárido sudamericano. Ecología Austral 31(3):456-74. https://doi.org/10.25260/EA.21.31.3.0.1615.

Daubenmire, R. F. 1959. Canopy Coverage Method of Vegetation Analysis. Northwest Sci 33:39-64.

Díaz, S., S. Lavorel, S. McIntrye, V. Falczuk, F. Casanoves, et al. 2007. Plant Trait Responses to Grazing? A Global Synthesis. Global Change Biology 13(2):313-41. https://doi.org/10.1111/j.1365-2486.2006.01288.x.

Dong, L., V. Martinsen, Y. Wu, Y. Zheng, C. Liang, et al. 2021. Effect of Grazing Exclusion and Rotational Grazing on Labile Soil Organic Carbon in North China. European Journal of Soil Science 72(1):372-84. https://doi.org/10.1111/ejss.12952.

Duffy, J. E., C. M. Godwin, and B. J. Cardinale. 2017. Biodiversity Effects in the Wild Are Common and as Strong as Key Drivers of Productivity. Nature 549(7671):261-64. https://doi.org/10.1038/nature23886.

Eldridge, D. J., M. Delgado-Baquerizo, S. K. Travers, J. Val, I. Oliver, et al. 2018. Livestock Activity Increases Exotic Plant Richness, but Wildlife Increases Native Richness, with Stronger Effects under Low Productivity. Journal of Applied Ecology 55(2):766-76. https://doi.org/10.1111/1365-2664.12995.

Facelli, J. M. 1988. Response to Grazing after Nine Years of Cattle Exlusion in a Flooding Pampa Grassland, Argentina. Vegetatio 78(1):21-25. https://doi.org/10.1007/BF00045635.

Fernández, P. D., M. Baumann, G. Baldi, R. N. Banegas, S. Bravo, et al. 2020. Grasslands and Open Savannas of the Dry Chaco. Pp. 562-576 en M. I. Goldstein and D. A. DellaSala (eds.). Encyclopedia of the World’s Biomes. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.12094-9.

Fernández, P. D., T. Kuemmerle, M. Baumann, H. R. Grau, J. A. Nasca, et al. 2020. Understanding the Distribution of Cattle Production Systems in the South American Chaco. Journal of Land Use Science 15(1):52-68. https://doi.org/10.1080/1747423X.2020.1720843.

Grau, H. R., R. Torres, N. I. Gasparri, P. G. Blendinger, S. Marinaro, et al. 2015. Natural Grasslands in the Chaco. A Neglected Ecosystem under Threat by Agriculture Expansion and Forest-Oriented Conservation Policies. Journal of Arid Environments 123(December):40-46. https://doi.org/10.1016/j.jaridenv.2014.12.006.

Grosso, S. D., and W. Parton. 2010. Global Potential Net Primary Production Predicted from Vegetation Class, Precipitation, and Temperature: Reply. Ecology 91(3):923-25. https://doi.org/10.1890/09-0741.1.

Guevara, J. C., O. R. Estevez, and C. R. Stasi. 2006. Respuesta de La Vegetación En Un Gradiente de Intensidad de Pastoreo En Mendoza, Argentina. Multequina 15:27-36.

Hess, B., N. Dreber, Y. Liu, K. Wiegand, M. Ludwig, et al. 2020. PioLaG: A Piosphere Landscape Generator for Savanna Rangeland Modelling. Landscape Ecology 35(9):2061-82. https://doi.org/10.1007/s10980-020-01066-w.

Holt, J. A. 1997. Grazing Pressure and Soil Carbon, Microbial Biomass and Enzyme Activities in Semi-Arid Northeastern Australia. Applied Soil Ecology 5(2):143-49. https://doi.org/10.1016/S0929-1393(96)00145-X.

Irisarri, J. G. N., J. D. Derner, L. M. Porensky, D. J. Augustine, J. L. Reeves, et al. 2016. Grazing Intensity Differentially Regulates ANPP Response to Precipitation in North American Semiarid Grasslands. Ecological Applications 26(5):1370-80. https://doi.org/10.1890/15-1332.

Kunst, C. R., S. Bravo, F. Moscovich, J. Herrera, J. Godoy, et al. 2003. Fecha de Aplicación de Fuego y Diversidad de Herbáceas En Una Sabana de Elionorus muticus (Spreng) O. Kuntze. Revista Chilena de Historia Natural 76(1). https://doi.org/10.4067/S0716-078X2003000100010.

Kunst, C. R., M. Cornacchione, and S. Bravo. 1998. Características Agronómicas de Gramíneas Del Campo Natural de La Región Chaqueña. INTA EEA Santiago del Estero.

Lange, R. T. 1969. The piosphere: sheep track and dung patterns. Rangeland Ecology and Management/Journal of Range Management Archives 22(6):396-400. https://doi.org/10.2307/3895849.

Ledesma, R. R., F. S. Saracco, R. D. Coria, M. F. Epstein Vitar, A. T. Gómez, et al. 2017. Guía de Forrajeras Herbáceas y Leñosas Del Chaco Seco: Identificación y Características Para Su Manejo. Buenas Prácticas Para Una Ganadería Sustentable. Kit de Extensión Para El Gran Chaco. Fundación Vida Silvestre. URL: tinyurl.com/yf44wykp.

López Mársico, L., and A. Altesor. 2011. Relación Entre La Riqueza de Especies Vegetales y La Productividad En Pastizales Naturales. Ecología Austral 21(1):101-9.

Macchi, L., and H. R. Grau. 2012. Piospheres in the Dry Chaco. Contrasting Effects of Livestock Puestos on Forest Vegetation and Bird Communities. Journal of Arid Environments 87(December):176-87. https://doi.org/10.1016/j.jaridenv.2012.06.003.

Maestre, F. T., Y. Le Bagousse-Pinguet, M. Delgado-Baquerizo, D. J. Eldridge, H. Saiz, et al. 2022. Grazing and Ecosystem Service Delivery In Global Drylands. Science 378(6622):915-20. https://doi.org/10.1126/science.abq4062.

Mazzini, F., M. A. Relva, and L. R. Malizia. 2018. Impacts of Domestic Cattle on Forest and Woody Ecosystems in Southern South America. Plant Ecology 219(8):913-25. https://doi.org/10.1007/s11258-018-0846-y.

McIntyre, S., K. M. Heard, and T. G. Martin. 2003. The Relative Importance of Cattle Grazing in Subtropical Grasslands: Does It Reduce or Enhance Plant Biodiversity? Journal of Applied Ecology 40(3):445-57. https://doi.org/10.1046/j.1365-2664.2003.00823.x.

Morello, J., S. D. Matteucci, A. F. Rodríguez, and M. E Silva. 2012. Ecorregiones y complejos ecosistemicos argentinos. 1a ed. Buenos Aires: Orientación Gráfica Editora.

Morici, E., R. Ernst, A. Kin, M. Estelrich, M. Mazzola, et al. 2003. Efecto Del Pastoreo En Un Pastizal Semiárido de Argentina Según La Distancia a La Aguada. Archivos de Zootecnia 52(197):59-66.

Oksanen, J., G. Simpson, F. Blanchet, R. Kindt, P. Legendre, et al. 2022. vegan: Community Ecology Package. R package version 2.6-4. URL: CRAN.R-project.org/package=vegan.

Olff, H., and M. E. Ritchie. 1998. Effects of Herbivores on Grassland Plant Diversity. Trends in Ecology and Evolution 13(7):261-65. https://doi.org/10.1016/S0169-5347(98)01364-0.

Paruelo, J. M., M. Oesterheld, A. Altesor, G. Piñeiro, C. Rodríguez, et al. 2022. Grazers and fires: Their role in shaping the structure and functioning of the Río de la Plata Grasslands. Ecología Austral 32:784-805. https://doi.org/10.25260/EA.22.32.2.1.1880.

Perkins, J. S., and D. S. G. Thomas. 1993. Spreading Deserts or Spatially Confined Environmental Impacts? Land Degradation and Cattle Ranching in the Kalahari Desert of Botswana. Land Degradation and Development 4(3):179-94. https://doi.org/10.1002/ldr.3400040307.

Pezzani, F., F. Lezama, F. Gallego, L. López-Mársico, E. Leoni, et al. 2017. El método de corte de biomasa genera mayores diferencias en la estimación de la productividad de pastizales que el tipo de pastizal. Revista Argentina de Producción Animal 37(1):21-32.

Pinheiro, J., D. Bates, and R Core Team. 2022. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-160. URL: CRAN.R-project.org/package=nlme.

Price, J. N., J. Sitters, T. Ohlert, P. M. Tognetti, C. S. Brown, et al. 2022. Evolutionary history of grazing and resources determine herbivore exclusion effects on plant diversity. Nat Ecol Evol 6:1290-1298. https://doi.org/10.1038/s41559-022-01809-9.

R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL: R-project.org.

Ritchie, H., and M. Roser. 2013. Land Use. Our World in Data, November. URL: ourworldindata.org/land-use.

Rodríguez, C., E. Leoni, F. Lezama, and A. Altesor. 2003. Temporal Trends in Species Composition and Plant Traits in Natural Grasslands of Uruguay. Journal of Vegetation Science 14(3):433-40. https://doi.org/10.1111/j.1654-1103.2003.tb02169.x.

Rueda, C. V., G. Baldi, S. R. Verón, and E. G. Jobbágy. 2013. Apropiación Humana de La Producción Primaria En El Chaco Seco. Ecología Austral 23(1):44-54. https://doi.org/10.25260/EA.13.23.1.0.1191.

Rusch, G. M., and M. Oesterheld. 1997. Relationship between Productivity, and Species and Functional Group Diversity in Grazed and Non-Grazed Pampas Grassland. Oikos 78(3):519. https://doi.org/10.2307/3545613.

Sala, O. E., M. Oesterheld, R. J. C. León, and A. Soriano. 1986. Grazing Effects upon Plant Community Structure in Subhumid Grasslands of Argentina. Vegetatio 67(1):27-32. https://doi.org/10.1007/BF00040315.

Sala, O. E., W. K. Lauenroth, S. J. McNaughton, G. Rusch, and Z. XinShi. 1996. Biodiversity and ecosystem functioning in grasslands. Pp. 129-149 en H. A. Mooney, J. H. Cushman, E. Medina, O. E. Sala and E. -D. Schulze. Functional roles of biodiversity: a global perspective.

Silva, D. M. D., F. Riet-Correa, R. M. T. Medeiros, and O. F. De Oliveira. 2006. Plantas tóxicas para ruminantes e eqüídeos no Seridó Ocidental e Oriental do Rio Grande do Norte. Pesquisa Veterinária Brasileira 26(4):223-36. https://doi.org/10.1590/S0100-736X2006000400007.

Tálamo, A., J. Lopez de Casenave, and S. M. Caziani. 2012. Components of Woody Plant Diversity in Semi-Arid Chaco Forests with Heterogeneous Land Use and Disturbance Histories. Journal of Arid Environments 85(October):79-85. https://doi.org/10.1016/j.jaridenv.2012.05.008.

Tálamo, A., C. E. Trucco, and S. M. Caziani. 2009. Vegetación Leñosa de Un Camino Abandonado Del Chaco Semiárido En Relación a La Matriz de Vegetación Circundante y El Pastoreo. Ecología Austral 19(2):157-65.

Tiedemann, J. L. 2015. Fenología y Productividad Primaria Neta Aérea de Sistemas Pastoriles de Panicum Maximun En El Dpto. Moreno, Santiago Del Estero, Argentina, Derivada Del NDVI MODIS. Ecología Aplicada 14(1):27-39. https://doi.org/10.21704/rea.v14i1-2.79.

Todd, S. W. 2006. Gradients in vegetation cover, structure and species richness of Nama-Karoo shrublands in relation to distance from livestock watering points. Journal of Applied Ecology 43:293-304. https://doi.org/10.1111/j.1365-2664.2006.01154.x.

Trigo, C. B., A. Tálamo, M. M. Núñez-Regueiro, E. J. Derlindati, G. A. Marás, et al. 2017. A Woody Plant Community and Tree-Cacti Associations Change with Distance to a Water Source in a Dry Chaco Forest of Argentina. The Rangeland Journal 39(1):15. https://doi.org/10.1071/RJ16014.

Trigo, C. B., P. E. Villagra, P. Cowper Coles, G. A. Marás, M. S. Andrade-Díaz, et al. 2020. Can Livestock Exclusion Affect Understory Plant Community Structure? An Experimental Study in the Dry Chaco Forest, Argentina. Forest Ecology and Management 463(May):118014. https://doi.org/10.1016/j.foreco.2020.118014.

Zanella, P. G., L. H. Paim, J. Della Giustina, C. E. Pinto, T. C. Baldissera, et al. 2021. Grazing Intensity Drives Plant Diversity but Does Not Affect Forage Production in a Natural Grassland Dominated by the Tussock-Forming Grass Andropogon Lateralis Nees. Scientific Reports 11(1):16744. https://doi.org/10.1038/s41598-021-96208-8.

Zerda, H. R., and J. L. Tiedemann. 2010. Dinámica temporal del NDVI del bosque y pastizal natural en el Chaco de la Provincia de Santiago del Estero, Argentina The temporal dynamic of NDVI, of forest and grassland in the Chaco Seco of Santiago del Estero province, Argentine. AMBIÊNCIA 6(1):13-24.

Zhang, R., Z. Wang, G. Han, M. P. Schellenberg, Q. Wu, et al. 2018. Grazing Induced Changes in Plant Diversity Is a Critical Factor Controlling Grassland Productivity in the Desert Steppe, Northern China. Agriculture, Ecosystems and Environment 265(October):73-83. https://doi.org/10.1016/j.agee.2018.05.014.

Zinn, Y. L., R. Lal, J. M. Bigham, and D. V. S. Resck. 2007. Edaphic Controls on Soil Organic Carbon Retention in the Brazilian Cerrado: Texture and Mineralogy. Soil Science Society of America Journal 71:1204-1214. https://doi.org/10.2136/sssaj2006.0014.

Livestock grazing in natural grasslands in the Dry Chaco: Does herbaceous vegetation change between two grasslands with different grazing pressures?

Published

2024-10-17

How to Cite

Cowper-Coles, P., Trigo, C. B., Andrade-Díaz, M. S., Gómez, C., & Tálamo, A. (2024). Livestock grazing in natural grasslands in the Dry Chaco: Does herbaceous vegetation change between two grasslands with different grazing pressures?. Ecología Austral, 486–495. https://doi.org/10.25260/EA.24.34.3.0.2319

Issue

Section

Articles