Variation in abundance and habitat selection of Panopea abbreviata: Low-cost remote video monitoring in the San Matas Gulf of the Southwest Atlantic

Authors

  • Marianela Arijon Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CCT CENPAT-CONICET). Puerto Madryn, Argentina
  • Karen Castro Instituto de Biología de Organismos Marinos (IBIOMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CCT CENPAT-CONICET). Puerto Madryn, Argentina
  • Gastón Trobbiani Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CCT CENPAT-CONICET). Puerto Madryn, Argentina
  • Gerardo Aguayo Buzo marisquero-Pescador artesanal. San Antonio Oeste, Argentina
  • Rodrigo Wiff Centre of Applied Ecology and Sustainability (CAPES-UC), Pontificia Universidad Católica de Chile. Santiago, Chile. Instituto Milenio en Socio-Ecología Costera (SECOS). Santiago, Chile
  • Alejo J. Irigoyen Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CCT CENPAT-CONICET). Puerto Madryn, Argentina

DOI:

https://doi.org/10.25260/EA.24.34.2.0.2331

Keywords:

‘Toki’ system, small scale fisheries, underwater video, Patagonia

Abstract

Clams belonging to the genus Panopea, part of the Hiatellidae family, are distributed in temperate seas and represent valuable fishing resources in most of the regions where they inhabit. These bivalves tend to aggregate on sandy and/or muddy substrates, exhibiting temporal variations in their abundance, or more precisely, in their detectability. Traditionally, monitoring of panopea populations has relied on autonomous diving, which poses safety limitations in terms of depth and duration of diving. In this study, we evaluated the efficacy of the low-cost remote video method known as ‘Toki’ for evaluating and monitoring Panopea abbreviata in the San Matías Gulf. Abundance observations were analyzed using generalized additive mixed models, incorporating temperature, depth, sampling date, and image quality as covariates. We observed a differential pattern in the abundance of P. abbreviata, with peaks occurring during October and May, in contrast to previous reports for other species within the same genus. Notably, the variation in abundance exceeded that reported for the same species in previous studies. In agreement with prior research, we found significantly higher densities of P. abbreviata on sandy substrates. ‘Toki’ proved to be an effective tool, enabling the coverage of extensive areas effortlessly and within a short timeframe. Its key advantages include accessibility to greater depths and minor time constraints than associated with diving, especially at depths below 25 m. Moreover, this technique provides a permanent record that can be subsequently utilized for additional purposes. It is worth noting that the entire procedure was conducted from a small boat, using manual operations, resulting in relatively low costs and enhanced operational convenience. Nevertheless, diving can serve as a complementary technique for intensive tasks in confined areas.

References

Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19:716-723. https://doi.org/10.1109/TAC.1974.1100705.

Beijbom, O., P. J. Edmunds, D. I. Kline, B. G. Mitchell, and D. Kriegman. 2012. Automated annotation of coral reef survey images. Pages 1170-1177 IEEE conference on computer vision and pattern recognition. https://doi.org/10.1109/CVPR.2012.6247798.

Bernard, A. T. F., A. Götz, S. E. Kerwath, and C. G. Wilke. 2013. Observer bias and detection probability in underwater visual census of fish assemblages measured with independent double-observers. Journal of Experimental Marine Biology and Ecology 443:75-84. https://doi.org/10.1016/j.jembe.2013.02.039.

Bozec, Y.-M., M. Kulbicki, F. Laloë, G. Mou-Tham, and D. Gascuel. 2011. Factors affecting the detection distances of reef fish: implications for visual counts. Marine Biology 158:969-981. https://doi.org/10.1007/s00227-011-1623-9.

Bradbury, A., B. Sizemore, D. Rothaus, and M. Ulrich. 2000. Stock Assessment of Subtidal Geoduck Clams (Panopea abrupta) in Washington. Washington State Department of Natural Resources and Washington State Department of Fish and Wildlife: 1-61.

Brooks, E., K. Sloman, D. Sims, and A. Danylchuk. 2011. Validating the use of baited remote underwater video surveys for assessing the diversity, distribution and abundance of sharks in the Bahamas. Endangered Species Research 13:231-243. https://doi.org/10.3354/esr00331.

Bureau, D., C. M. Hand, and W. Hajas. 2012. Stock Assessment Framework for the British Columbia Geoduck Fishery. DFO Canadian Science Advisory Secretariat Res. Doc. 2011/121. viii. Pacific Region. Pp. +79.

Cappo, M., E. Harvey, and M. Shortis. 2007. Counting and measuring fish with baited video techniques—an overview. Pp. 101-114 en Proceedings of the Australian Society for Fish Biology workshop, Hobart.

Carbines, G., and R. G. Cole. 2009. Using a remote drift underwater video (DUV) to examine dredge impacts on demersal fishes and benthic habitat complexity in Foveaux Strait, Southern New Zealand. Fisheries Research 96:230-237. https://doi.org/10.1016/j.fishres.2008.11.007.

Chidami, S., G. Guénard, and M. Amyot. 2007. Underwater infrared video system for behavioral studies in lakes. Limnology and Oceanography: Methods 5:371-378. https://doi.org/10.4319/lom.2007.5.371.

Ciocco, N. F. 2001. Relevamiento de bancos de moluscos bivalvos de interés marisquero en el Golfo San José. Informe Técnico Lapemar N°11.

Cortez-Lucero, G., J. A. Arreola-Lizárraga, J. Chávez-Villalba, and E. A. Aragón-Noriega. 2014. Distribución y abundancia de la almeja de sifón Panopea globosa (Bivalvia: Hiatellidae), en la región central del Golfo de California, México. Hidrobiologica 24:167-174.

Dickens, L. C., C. H. R. Goatley, J. K. Tanner, and D. R. Bellwood. 2011. Quantifying Relative Diver Effects in Underwater Visual Censuses. PLoS ONE 6:e18965. https://doi.org/10.1371/journal.pone.0018965.

Gardner, J. P. A., and C. D. Struthers. 2012. Comparisons among survey methodologies to test for abundance and size of a highly targeted fish species. Journal of Fish Biology 82:242-262. https://doi.org/10.1111/j.1095-8649.2012.03478.x.

Goodwin, C. L., and B. Pease. 1989. Species profiles: life histories and environmental requirements of coastal fish and invertebrates (Pacific Northwest): Pacific geoduck clam. U.S. Fish and Wildlife Service. Biological Report 82 (11.120). U.S. Army Corps of Engineers, TR EL82-4. Pp. 14.

Goodwin, C. L. 1977. The effects of season on visual and photographic assessment of subtidal geoduck clam (Panopea generosa Gould) populations. Veliger 20:155-158.

Gribben, P. E., and R. G. Creese. 2005. Age, growth, and mortality of the New Zealand geoduck clam, Panopea zelandica (Bivalvia: Hiatellidae) in two North Island populations. Bulletin of Marine Science 77:119-135.

Gribben, P. E., J. Helson, and R. Millar. 2004. Population abundance estimates of the New Zealand geoduck clam, Panopea zelandica, using North American methodology: is the technology transferable? Journal of shellfish research 23:683-691.

Harvey, E. S., D. Fletcher, and M. R. Shortis. 2001a. A comparison of the precision and accuracy of estimates of reef fish lengths determined visually by divers with estimates produced by a stereo-video system. Fishery Bulletin- National Oceanic and Atmospheric Administration 99:63-71. https://doi.org/10.4031/002533202787914106.

Harvey, E. S., D. Fletcher, and M. R. Shortis. 2001b. Improving the statistical power of length estimates of reef fish: A comparison of estimates determined visually by divers with estimates produced by a stereo-video system. Fishery Bulletin-National Oceanic and Atmospheric Administration 99:72-80.

Harvey, E. S., M. R. Shortis, M. Stadler, and M. Cappo. 2002. A comparison of the accuracy and precision of measurements from single and stereo-video Systems. Marine Technology Society Journal 36:38-49. https://doi.org/10.4031/002533202787914106.

Helbling, E., M. Narvarte, R. A. González, and V. E. Villafañe. 2022. Global change in Atlantic coastal Patagonian ecosystems. Springer Cham. https://doi.org/10.1007/978-3-030-86676-1.

Hidalgo-de-la-Toba, J. A., S. S. González-Peláez, and D. B. Lluch-Cota. 2023. Recruitment patterns in Mexican geoduck (Panopea spp.) populations: Reconstruction from age structure and mortality parameters. Fisheries Research 257. https://doi.org/10.1016/j.fishres.2022.106512.

Irigoyen, A. J., I. Rojo, A. Calò, G. Trobbiani, N. Sánchez-Carnero, and J. A. García-Charton. 2018a. The ‘Tracked Roaming Transect’ and distance sampling methods increase the efficiency of underwater visual censuses. PLOS ONE 13:e0190990. https://doi.org/10.1371/journal.pone.0190990.

Irigoyen, A., A. De Wysiecki, G. Trobbiani, N. Bovcon, C. Awruch, F. Argemi, and A. Jaureguizar. 2018b. Habitat use, seasonality and demography of an apex predator: sevengill shark Notorynchus cepedianus in northern Patagonia. Marine Ecology Progress Series 603:147-160. https://doi.org/10.3354/meps12715.

Mallet, D., and D. Pelletier. 2014. Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952-2012). Fisheries Research 154:44-62. https://doi.org/10.1016/j.fishres.2014.01.019.

McClanahan, T. R., N. A. J. Graham, J. Maina, P. Chabanet, J. H. Bruggemann, and N. V. C. Polunin. 2007. Influence of instantaneous variation on estimates of coral reef fish populations and communities. Marine Ecology Progress Series 340:221-234. https://doi.org/10.3354/meps340221.

Mcdonald, P. S., T. E. Essington, J. P. Davis, A. W. E. Galloway, B. C. Stevick, G. C. Jensen, G. R. Vanblaricom, and D. A. Armstrong. 2015. Distribution, abundance, and habitat associations of a large bivalve (Panopea generosa) in a eutrophic Fjord Estuary. Journal of Shellfish Research 34:137-145. https://doi.org/10.2983/035.034.0117.

Meekan, M., and M. Cappo. 2004. Non-Destructive Techniques for Rapid Assessment of Shark Abundance in Northern Australia. Produced for Australian Government Department of Agriculture, Fisheries and Forestry by the Australian Institute of Marine Science, Townsville.

Van der Molen, S., M. Kroeck, and N. Ciocco. 2007. Reproductive cycle of the southern geoduck clam, Panopea abbreviata (bivalvia: Hiatellidae), in north patagonia, Argentina. Invertebrate Reproduction and Development 50:75-84. https://doi.org/10.1080/07924259.2007.9652230.

Morsan, E., and N. F. Ciocco. 2004. Age and growth model for the southern geoduck, Panopea abbreviata, of Puerto Lobos (Patagonia, Argentina). Fisheries Research 69:343-348. https://doi.org/10.1016/j.fishres.2004.06.012.

Morsan, E., P. Zaidman, M. Ocampo-Reinaldo, and N. Ciocco. 2010. Population structure, distribution and harvesting of southern geoduck, Panopea abbreviata, in San Matías Gulf (Patagonia, Argentina). Scientia Marina 74:763-772. https://doi.org/10.3989/scimar.2010.74n4763.

Pedersen, E. J., D. L. Miller, G. L. Simpson, and N. Ross. 2019. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ 7. https://doi.org/10.7717/peerj.6876.

Priede, I. G., K. L. Smith, and J. D. Armstrong. 1990. Foraging behavior of abyssal grenadier fish: inferences from acoustict agging and tracking in the North Pacific Ocean. Deep Sea Research 37:81-101. https://doi.org/10.1016/0198-0149(90)90030-Y.

Pritchett, M. 2003. Geoduck clam stock assessment surveys and fishery management for the 2002/2003 season. Regional Information Report1 No. 1J02-47. Alaska Department of Fish and Game Division of Commercial Fisheries.

R Core Team. 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: R-project.org.

Ripley, B., B. Venables, D. M. Bates, K. Hornik, A. Gebhardt, D. Firth, and M. B. Ripley. 2013. Package ‘MASS.’ Cran R.

Rooper, C. N., and M. Zimmermann. 2007. A bottom-up methodology for integrating underwater video and acoustic mapping for seafloor substrate classification. Continental Shelf Research 27:947-957. https://doi.org/10.1016/j.csr.2006.12.006.

Sánchez-Carnero, N., M. E. Góngora, M. Álvarez, and A. M. Parma. 2022. La pesca artesanal en Argentina. Caminando las costas del país. 1st edition.

Shortis, M., E. Harvey, and D. Abdo. 2009. A review of underwater stereo-image measurement for marine biology and ecology applications. Oceanography and Marine Biology 47:257-292. https://doi.org/10.1201/9781420094220-9.

Stokesbury, K. D. E., B. P. Harris, M. C. Marino II, and J. I. Nogueira. 2004. Estimation of sea scallop abundance usinga video survey in off-shore US waters. Journal of Shellfish Research 23:33-40.

Tran, M. 2013. Mapping and predicting benthic habitats inestuaries using towed underwater video. Master thesis,University of Technology, Sydney, Australia.

Trobbiani, G. 2019. La pesca de arrastre en la costa norte del Golfo San Jorge: distribución, frecuencia de disturbio y efectos sobre las comunidades asociadas al fondo. Tesis doctoral, Universidad Nacional del Comahue, Bariloche, Argentina.

Trobbiani, G., A. J. Irigoyen, L. A. Venerus, P. M. Fiorda, and A. M. Parma. 2018. A low-cost towed video camera system for underwater surveys: comparative performance with standard methodology. Environmental Monitoring and Assessment 190:683. https://doi.org/10.1007/s10661-018-7070-z.

Trobbiani, G., A. M. De Wysiecki, N. Bovcon, and A. J. Irigoyen. 2021. Uso de BRUVS para describir el ensamble de peces y su estacionalidad en dos caletas marinas poco profundas dentro de áreas protegidas de la Patagonia, Argentina. Ecología Austral 31:170-181. https://doi.org/10.25260/EA.21.31.1.0.1152.

Trobbiani, G., and A. J. Irigoyen. 2016. ‘Pepe’: a novel low cost drifting video system for underwater survey. 3rd IEEE/OES South American International Symposium on Oceanic Engineering (SAISOE). Pages 1-4. https://doi.org/10.1109/SAISOE.2016.7922472.

Trobbiani, G., and L. A. Venerus. 2015. A novel method to obtain accurate length estimates of carnivorous reef fishes from a single video camera. Neotropical Ichthyology 13:93-102. https://doi.org/10.1590/1982-0224-20140101.

Trobbiani, G., L. N. Getino, A. J. Irigoyen, and A. M. Parma. ‘Toki’, a light low-cost video system for seabed research: performance and precision of Tehuelche scallop (Aequipecten tehuelchus) survey estimates in San José Gulf, Argentina. bioRxiv 2024.04.21.590398. https://doi.org/10.1101/2024.04.21.590398.

Whitmarsh, S. K., P. G. Fairweather, and C. Huveneers. 2017. What is Big BRUVver up to? Methods and uses of baited underwater video. Reviews in Fish Biology and Fisheries 27:53-73. https://doi.org/10.1007/s11160-016-9450-1.

Willis, T. J., and R. C. Babcock. 2000. A baited underwater video system for the determination of relative density of carnivorous reef fish. Marine and Freshwater Research 51:755-763. https://doi.org/10.1071/MF00010.

Wilson, K. L., L. M. Kay, A. L. Schmidt, and H. K. Lotze. 2015. Effects of increasing water temperatures on survival and growth of ecologically and economically important seaweeds in Atlantic Canada: implications for climate change. Marine Biology 162:2431-2444. https://doi.org/10.1007/s00227-015-2769-7.

Wood, S. N. 2006. Low-rank scale-invariant tensor product smooths for Generalized Additive Mixed Models. Biometrics 62:1025-1036. https://doi.org/10.1111/j.1541-0420.2006.00574.x.

Wood, S. 2017. Generalized Additive Models: An introduction with R (2nd ed). CRC Press. https://doi.org/10.1201/9781315370279.

De Wysiecki, A. M., G. A. Trobbiani, and A. J. Irigoyen. 2021. Backing up from negative stimuli: A back‐thrust mechanism during escape‐like response in wild sevengill sharks (Notorynchus cepedianus). Ethology 127:202-212. https://doi.org/10.1111/eth.13104.

Zaidman, P. C. 2013. Dinámica de la metapoblación de almeja panopea Panopea abbreviata en los Golfos Norpatagónicos. Tesis doctoral, Universidad Nacional del Comahue, Bariloche, Argentina.

Zaidman, P. C., M. A. Kroeck, S. van der Molen, G. Williams, L. Gracia-Villalobos, E. Oehrens-Kissner, and E. M. Morsan. 2016. Local scale variation in the reproductive pattern of the southern geoduck, Panopea abbreviata (Bivalvia: Hiatellidae), in Patagonia. Revista de Biología Marina y Oceanografía 51:359-371. https://doi.org/10.4067/S0718-19572016000200013.

Zaidman, P. C., and E. Morsan. 2015. Growth variability in a metapopulation: The case of the southern geoduck (Panopea abbreviata). Fisheries Research 172:423-431. https://doi.org/10.1016/j.fishres.2015.08.011.

Variation in abundance and habitat selection of Panopea abbreviata: Low-cost remote video monitoring in the San Matas Gulf of the Southwest Atlantic

Published

2024-07-05

How to Cite

Arijon, M., Castro, K., Trobbiani, G., Aguayo, G., Wiff, R., & Irigoyen, A. J. (2024). Variation in abundance and habitat selection of Panopea abbreviata: Low-cost remote video monitoring in the San Matas Gulf of the Southwest Atlantic. Ecología Austral, 34(2), 364–376. https://doi.org/10.25260/EA.24.34.2.0.2331