Taxonomical and functional structure of benthic macroinvertebrates from forest and agriculture zones in the Tucumán plain

Authors

  • Mario D. Stepanenko Instituto de Biodiversidad Neotropical (IBN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Tucumán (UNT), Facultad de Ciencias Naturales e Instituto Miguel Lillo (IML)
  • Edgardo J. I. Pero Instituto de Biodiversidad Neotropical (IBN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Tucumán (UNT), Facultad de Ciencias Naturales e Instituto Miguel Lillo (IML). Reserva Experimental Horco Molle (REHM) y Jardín Botánico Horco Molle (JBHM), Facultad de Ciencias Naturales e Instituto Miguel Lillo (IML), Universidad Nacional de Tucumán. Centro de Investigación y Transferencia Rafaela (UNRaf-CONICET).
  • María C. Reynaga Instituto de Biodiversidad Neotropical (IBN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Tucumán (UNT), Facultad de Ciencias Naturales e Instituto Miguel Lillo (IML)

DOI:

https://doi.org/10.25260/EA.24.34.3.0.2345

Keywords:

agroecosystems, biomonitoring, Dry Chaco, ecotone, functional traits, Yungas forest

Abstract

Changes in land use affect the ecosystems integrity by modifying a wide variety of physical-chemical and biological aspects. The objective of this study was to compare physicochemical parameters and taxonomic and functional diversity of benthic macroinvertebrate communities between sites located in the plains of Tucuman province, in territories with agricultural use and reference sites with a greater forested area. Four sampling sites were selected: Río Chico and Río Marapa (forest use), and Río Balderrama and Río Seco (agricultural use). Between October and November 2017, physical and chemical variables of the water were measured with a multiparametric probe in the field, and the concentration of nutrients and ions was determined at the laboratory. Quantitative samples of benthic macroinvertebrates were collected with a D-net. For the functionality analysis, a table of four biological traits with their respective modalities, information that was coded using fuzzy methodology. The structure and composition of the assemblages were evaluated according to range-abundance curves. Environmental and biological data between sites were compared using multivariate analysis techniques. The sites subjected to agricultural use were characterized by higher nutrient values (phosphate, ammonium, and nitrate), lower dissolved oxygen values, less uniformity, Oligochaeta dominance and uniformity of biological traits. The reference sites reflected higher levels of dissolved oxygen and conductivity, greater evenness and greater variety of functional traits. The species richness was similar between the two types of cover. Replacement of forest cover by agriculture could affect the ecological diversity of rivers, even from a relatively low difference in coverage percentages. Due to the evidenced relationship between the types of cover, physical-chemical parameters of the water and the taxonomic and functional diversity of benthic macroinvertebrates, these organisms stand out as bioindicators of environmental quality of rivers in Tucumán plain.

References

Allan, J. D. 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257-284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122

Allan, J. D., D. L. Erickson, and J. Fay. 1997. The influence of catchment land use on stream integrity across multiple spatial scales. Freshw Biol 37:149-161. https://doi.org/10.1046/j.1365-2427.1997.d01-546.x.

Badillo, L., P. Guayasamín, M. Espinosa, P. Cedeño, and G. Jiménez. 2016. Caracterización de la calidad de agua mediante macroinvertebrados bentónicos en el río Puyo, en la Amazonía Ecuatoriana. Hidrobiológica 26(3):497-507. https://doi.org/10.24275/uam/izt/dcbs/hidro/2016v26n3/Rodriguez.

Cabrera, A. L. 1976. Regiones Fitogeográficas Argentinas. Enciclopedia Argentina de Agricultura y Jardinería. Segunda Edición. Tomo II. Fascículo 1. Editorial Acme S.A.C.I. Buenos Aires.

Chevenet, F., S. Dolédec, and D. Chessel. 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwat Biol 31:295-309. https://doi.org/10.1111/j.1365-2427.1994.tb01742.x.

Clavel, J., R. Julliard, and V. Devictor. 2011. Worldwide decline of specialist species: toward a global functional homogenization? Frontiers in Ecology and the Environment 9(4):222-228. https://doi.org/10.1890/080216.

Comisión de Emergencia para el tratamiento de la problemática de inundaciones en el sur de la provincia de Tucumán, Este de Catamarca y Río Hondo. 2017. Informe Técnico. Tucumán, Argentina. URL: tinyurl.com/bdfacstr.

Díaz Gómez, A. R., and F. J. Gaspari. 2017. Cambio de cobertura y uso de suelo en la zona ribereña en cuencas subtropicales del noroeste argentino. Quebracho 25(1,2):28-39.

Dirección de Bosques, Ministerio de Ambiente y Desarrollo Sustentable. 2017. Programa Nacional de Restauración de Bosques Nativos Degradados. Buenos Aires, Argentina. URL: tinyurl.com/yc2a4y2j.

Dolédec, S., and B. Statzner. 2008. Invertebrate traits for the biomonitoring of large European rivers: an assessment of specific types of human impact. Freshwater Biology 53(3):617-634. https://doi.org/10.1111/j.1365-2427.2007.01924.x.

Dolédec, S., B. Statzner, and M. Bournard. 1999. Species traits for future biomonitoring across ecoregions: patterns along a human‐impacted river. Freshwater Biology 42(4):737-758. https://doi.org/10.1046/j.1365-2427.1999.00509.x.

Domínguez, E., and H. R. Fernández. 2009. Macroinvertebrados bentónicos sudamericanos: sistemática y biología. Fundación Miguel Lillo, San Miguel de Tucumán, Argentina.

Dos Santos, D. A., C. Molineri, M. C. Reynaga, and C. Basualdo. 2011. Which index is the best to assess stream health? Ecological Indicators 11(2):582-589. https://doi.org/10.1016/j.ecolind.2010.08.004.

Dray, S., and A. B. Dufour. 2007. The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software 22:1-20. https://doi.org/10.18637/jss.v022.i04.

Elbrecht, V., A. J. Beermann, G. Goessler, J. Neumann, R. Tollrian, R. Wagner, and F. Leese. 2016. Multiple‐stressor effects on stream invertebrates: a mesocosm experiment manipulating nutrients, fine sediment and flow velocity. Freshwater Biology 61(4):362-375. https://doi.org/10.1111/fwb.12713.

Fernández, H. R., F. Romero, and E. Dominguez. 2008. Intermountain basins use in subtropical regions and their influences on benthic fauna. River Research and Applications 25(2):181-193. https://doi.org/10.1002/rra.1114.

Feinsinger, P. 2001. Designing field studies for biodiversity conservation. Island Press, Washington DC, USA.

Fundación Proyungas, Instituto de Biodiversidad Neotropical, Ministerio de Ambiente y Desarrollo Sustentable. 2017. Informe inédito. Tucumán, Argentina.

Gamboa, M., R. Reyes, and J. Arrivillaga. 2008. Macroinvertebrados bentónicos como bioindicadores de salud ambiental. Boletín de Malariología y Salud Ambiental 48(2):109-120.

Gallardo Armas, B. 2009. Aquatic community patterns across environmental gradients in a Mediterranean floodplain and their application to ecosystem restoration. Doctoral Dissertation. Universitat de Girona. Girona, España. Pp. 155.

García, L., F. C. Wyatt, I. Pardo, and J. S. Richardson. 2017. Effects of land-use intensification on stream basal resources and invertebrate communities. Freshwater Science 36(3):609-625. https://doi.org/10.1086/693457.

Gasparri, N. I. 2016. The transformation of land-use competition in the Argentinean Dry Chaco between 1975 and 2015. Pp. 59-73 en J. Niewöhner, A. Bruns, H. Haberl, P. Hostert, T. Krueger and C. Lauk et al. (eds.). Land Use Competition: Ecological, Economic and Social Perspectives Springer, Cham, Suiza. https://doi.org/10.1007/978-3-319-33628-2_4.

Giraldo, L. P., J. Chará, M. D. C. Zúñiga, A. M. Chará-Serna, and G. Pedraza. 2014. Impacto del uso del suelo agropecuario sobre macroinvertebrados acuáticos en pequeñas quebradas de la cuenca del río La Vieja (Valle del Cauca, Colombia). Revista de Biología Tropical 62:203-219. https://doi.org/10.15517/rbt.v62i0.15788.

Ihaka, R., and R. Gentleman. 1996. R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics 5:299-314. https://doi.org/10.2307/1390807.

Kasangaki, A., L. J. Chapman, and J. Balirwa. 2008. Land use and the ecology of benthic macroinvertebrate assemblages of high‐altitude rainforest streams in Uganda. Freshwater biology 53(4):681-697. https://doi.org/10.1111/j.1365-2427.2007.01925.x.

Ladrera, R., O. Belmar, R. Tomás, N. Prat, and M. Cañedo-Argüelles. 2019. Agricultural impacts on streams near Nitrate Vulnerable Zones: A case study in the Ebro basin, Northern Spain. PLoS ONE 14(11):e0218582. https://doi.org/10.1371/journal. pone.0218582.

Lares, B. A., L. B. Parra-Morales, C. M. Montagna, J. Del Brio, L. Monza, P. A. Macchi, and H. R. Fernández. 2022. Influence of agricultural practices on the composition of macroinvertebrate assemblages in the Neuquén river, Patagonia (Argentina). Ecología Austral 32:957-971. https://doi.org/10.25260/EA.22.32.3.0.1758.

Marchese, M. R., K. M. Wantzen, and I. Ezcurra de Drago. 2005. Benthic invertebrate assemblages and species diversity patterns of the upper Paraguay River. River Research and Applications 21(5):485-499. https://doi.org/10.1002/rra.814.

Meza-S, A. M., J. Rubio-M., L. Gomez-Dias, and J. M-Walteros. 2012. Calidad de agua y composición de macroinvertebrados acuáticos en la subcuenca alta del Río Chinchiná, Colombia. Caldasia 34(2):443-456.

Mondy, C. P., and P. Usseglio-Polatera. 2013. Using conditional tree forests and life history traits to assess specific risks of stream degradation under multiple pressure scenario. Science of the Total Environment 461:750-760. https://doi.org/10.1016/j.scitotenv.2013.05.072.

Montes Arrondo, A. 2015. Diversidad taxonómica y funcional de invertebrados acuáticos en la Península Ibérica: patrones de distribución espacial. Tesis final de grado. Facultad de Ciencia y Tecnología, Universidad del País Vasco. País Vasco, España. Pp. 32.

Molineri, C., E. G. Tejerina, S. E. Torrejon, E. J. I. Pero, and G. E. Hankel. 2020. Indicative value of different taxonomic levels of Chironomidae for assessing the water quality. Ecological Indicators 108(2020). https://doi.org/10.1016/j.ecolind.2019.105703.

Nessimian, J. L., E. M. Venticinque, J. Zuanon, P. De Marco, M. Gordo, et al. 2008. Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia 614(1):117-131. https://doi.org/10.1007/s10750-008-9441-x.

Olden, J. D., N. L. Poff, M. R. Douglas, M. E. Douglas, K. D. Fausch. 2004. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18-24. https://doi.org/10.1016/j.tree.2003.09.010.

Paerl, H. W., and T. G. Otten. 2013. Harmful Cyanobacterial Blooms: Causes, Consequenses, and Controls. Environmental Microbiology 65(4):995-1010. https://doi.org/10.1007/s00248-012-0159-y.

Pallotinni, M., D. Cappelletti, A. Fabrizzi, E. Gaino, E. Goretti, R. Selvaggi, and R. Céréghino. 2016. Macroinvertebrate functional trait responses to chemical pollution in agricultural-industrial landscapes. River Research and Applications 33(4):505-513. https://doi.org/10.1002/rra.3101.

Panis, L. I., B. Goddeeris, and R. Verheyen. 1995. The hemoglobin concentration of Chironomus cf. plumosus l. (Diptera: Chironomidae) larvae from two lentic habitats. Netherland Journal of Aquatic Ecology 29(1):1-4. https://doi.org/10.1007/BF02061785.

Paul, M. J., and J. L. Meyer. 2001. Streams in the urban environment. Ann Rev Ecol Syst 32:333-365. https://doi.org/10.1146/annurev.ecolsys.32.081501.114040.

Pero, E. J. I., E. Casagranda, L. Cristobal, A. Wottitz, and N. I. Gasparri. 2020a. Evaluación del déficit de bosques de ribera en Tucumán. Ecología Austral 30:484-496. https://doi.org/10.25260/EA.20.30.3.0.1117.

Pero, E. J. I., G. E. Hankel, C. Molineri, and E. Domínguez. 2019. Correspondance between stream benthic macroinvertebrate assembles and ecoregions in northwestern Argentina. Freshwater Science 38(1):64-76. https://doi.org/10.1086/701467.

Pero, E. J. I., S. M. Georgieff, L. M. Gultemirian, F. Romero, G. E. Hankel, and E. Domínguez, E. 2020b. Ecoregions, climate, topography, physicochemical, or a combination of all: Which criteria are the best to define river types based on abiotic variables and macroinvertebrates in neotropical rivers? Science of the Total Environment 738:140303. https://doi.org/10.1016/j.scitotenv.2020.140303.

Pero, E. J. I., and P. A. Quiroga. 2019. Riparian and adjacent forest differ both in the humid mountainous ecoregion and the semiarid lowland. Plant Ecology 220(4):481-498. https://doi.org/10.1007/s11258-019-00929-w.

Peters, R. H. 1983. The ecological implications of body size. Cambridge University, UK. https://doi.org/10.1017/CBO9780511608551.

Poff, N. L. 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16(2):391-409. https://doi.org/10.2307/1468026.

Pool, T. K., and J. D. Olden. 2012. Taxonomic and functional homogenization of an endemic desert fish fauna. Diversity and Distributions 18:366-376. https://doi.org/10.1111/j.1472-4642.2011.00836.x.

Quantum GIS Development Team. 2014. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. URL: qgis.osgeo.org.

R Development Core Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: Rproject.org.

Reynaga, M. C. 2010. Los macroinvertebrados bentónicos de ríos subtropicales de montaña y la definición de sus rasgos biológicos. Tesis Doctoral. Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán. Tucumán, Argentina. Pp. 126.

Reynaga, M. C., and D. A. Dos Santos. 2012. Rasgos biológicos de macroinvertebrados de ríos subtropicales: patrones de variación a lo largo de gradientes ambientales espacio-temporales. Ecología Austral 22(2):112-120.

Reynaga, M. C., and D. A. Dos Santos. 2013. Contrasting taxonomical and functional responses of stream invertebrates across space and time in a Neotropical basin. Fundamental and Applied Limnology 183(2):121-123. https://doi.org/10.1127/1863-9135/2013/0501.

Ríos-Touma, B., C. Villamarín, G. Jijón, J. Cheka, G. Granda-Albuja, E. Bonifaz, and L. Guerrero-Latorre. 2022. Aquatic biodiversity loss in Andean urban streams. Urban Ecosystems 25:1619-1629. https://doi.org/10.1007/s11252-022-01248-1.

Scotti, A., L. Füreder, T. Marsoner, U. Tappeiner, A. E. Stawinoga, and R. Botarin. 2020. Effects of land cover type on community structure and functional traits of alpine stream benthic macroinvertebrates. Freshwater Biology 65(3):524-539. https://doi.org/10.1111/fwb.13448.

Segnini, S. 2003. El uso de los macroinvertebrados bentónicos como indicadores de la condición ecológica de los cuerpos de agua corriente. Ecotropicos 16(2):45-63. URL: ecotropicos.saber.ula.ve.

Sermeño Chicas, J. M., D. Pérez, S. M. Muños Aguillón, L. Serrano Cervantes, A. W. Rivas Flores, and A. J. Monterrosa Urias. 2010. Metodología estandarizada de muestreo multi-hábitat de macroinvertebrados acuáticos mediante el uso de la Red “D” en ríos de El Salvador. Proyecto Universidad de El Salvador (UES)-Organización de los Estados Americanos (OEA). Editorial Universitaria UES, San Salvador, El Salvador.

Soria, F. J., C. Fandos, P. Scandaliaris, and J. I. Carreras Baldrés. 2016. Relevamiento satelital de los principales cultivos de Tucumán (2014/2015). Avance Agroindustrial 37(1):1-37. URL: eeaoc.gob.ar/?publicacion=av-37-1-9.

Utz, R. M., R. H. Hilderbrand, and D. M. Boward. 2009. Identifying regional differences in threshold responses of aquatic invertebrates to land cover gradients. Ecological Indicators 9:556-567. https://doi.org/10.1016/j.ecolind.2008.08.008.

Tomanova, S., and P. Usseglio-Polatera. 2007. Patterns of benthic community traits in neotropical streams: relationship to mesoscale spatial variability. Fundamental and Applied Limnology/Archiv für Hydrobiologie 170(3):243-255. https://doi.org/10.1127/1863-9135/2007/0170-0243.

Torti, M. J., S. I. Portela, and A. E. Andriulo. 2020. Phosphorus and nitrogen fractions during base flow conditions of a Pampean stream and their relationships with land use. Ecología Austral 30:331-343. https://doi.org/10.25260/EA.20.30.3.0.1073.

Valcárcel Rojas, D. R. 2011. Evaluación de la degradación de ecosistemas dulceacuícolas en la cuenca baja del río Uctubamba (Amazonas-Perú) mediante el uso de macroinvertebrados bentónicos. Tesis de grado. Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos. Lima, Perú. Pp. 80.

Verdonschot, P. F., and O. Moog. 2006. Tools for assessing European streams with macroinvertebrates: major results and conclusions from the STAR project. Hydrobiologia 566(1):299-309. https://doi.org/10.1007/s10750-006-0088-1.

Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, and P. M. Davies. 2010. Global threats to human water security and river biodiversity. Nature 467(7315):555. https://doi.org/10.1038/nature09440.

Withers, P. J. A., C. Neal, H. P. Jarvie, and D. G. Doody. 2014. Agriculture and Eutrophication: where do we go from here? Sustainability 6:5853-5875. https://doi.org/10.1038/nature09440.

Wenger, S. J., A. H. Roy, C. R. Jackson, E. S. Bernhardt, T. L. Carter, S. Filoso, and J. L. Meyer. 2009. Twenty-six key research questions in urban stream ecology: an assessment of the state of the science. Journal of the North American Benthological Society 28(4):1080-1098. https://doi.org/10.1899/08-186.1.

Wurtsbaugh, W. A., H. W. Paerl, and W. K. Doods. 2019. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdisciplinary Reviews: Water 6(5):e1373. https://doi.org/10.1002/wat2.1373.

Taxonomical and functional structure of benthic macroinvertebrates from forest and agriculture zones in the Tucumán plain

Published

2024-10-17

How to Cite

Stepanenko, M. D., Pero, E. J. I., & Reynaga, M. C. (2024). Taxonomical and functional structure of benthic macroinvertebrates from forest and agriculture zones in the Tucumán plain. Ecología Austral, 512–526. https://doi.org/10.25260/EA.24.34.3.0.2345

Issue

Section

Articles