Diversity, structure and dynamics of tropical montane forests: Insights from permanent-plot monitoring in the Venezuelan Andes

Authors

  • Maryam E. Sánchez Instituto de Investigaciones para el Desarrollo Forestal (INDEFOR), Facultad de Ciencias Forestales y Ambientales, Universidad de Los Andes. Mérida, Venezuela
  • Luis D. Llambí Instituto de Ciencias Ambientales y Ecológicas (ICAE), Universidad de Los Andes. Mérida, Venezuela. Consorcio para el Desarrollo Sostenible de la Ecorregión Andina-CONDESAN
  • Luis E. Laboratorio de Dendrología, Facultad de Ciencias Forestales y Ambientales, Universidad de Los Andes. Mérida, Venezuela
  • Gerardo Rodríguez Laboratorio de Dendrología, Facultad de Ciencias Forestales y Ambientales, Universidad de Los Andes. Mérida, Venezuela
  • Roxibell Pelayo Instituto de Ciencias Ambientales y Ecológicas (ICAE), Universidad de Los Andes. Mérida, Venezuela
  • Michele Ataroff Instituto de Ciencias Ambientales y Ecológicas (ICAE), Universidad de Los Andes. Mérida, Venezuela
  • Emilio Vilanova Wildlife Conservation Society (WCS) https://orcid.org/0000-0001-6289-5127

DOI:

https://doi.org/10.25260/EA.24.34.2.0.2349

Keywords:

aboveground biomass, cloud forests, tree demography, dispersal syndromes, forest dynamics, species composition, tropical Andes

Abstract

Tropical montane forests in the Andes are hotspots for species diversity and constitute important ecosystems for the provision of numerous services critical for local populations, including biomass/carbon accumulation and hydrological regulation. Additionally, in many countries in the region, these forests are being lost or degraded at alarming rates. Understanding their dynamics in terms of the composition, diversity, structure and function is a key challenge in the region that can inform policies for their sustainable management and conservation. This study focused on the use of monitoring data from ground-based permanent plots (part of the Andean Forest Network) in the two main mountain ranges of the Venezuelan Andes to analyze forest structure, diversity and dynamics over six years (2016-2023), and their potential drivers. We found that although the we�er forests of La Mucuy (northeast) and the more seasonal stands of San Eusebio (northwest) are very similar in terms of overall species richness, they show substantial differences in their species assemblages and their biogeographic origins. Both sites share similarities in tree dispersal strategies and stem turnover rates (mean=1.16%/year), but forests in La Mucuy are significantly more productive, with a mean annual woody productivity rate of 3.09±1.42 Mg C.ha-1.y-1, while this rate was 0.73±0.48 Mg C.ha-1.y-1 in SEU plots. Interestingly, although species richness and composition has not shown significant changes during this 6-year period, both sites have increased their total aboveground biomass, acting as a significant carbon sink, which appears to be largely driven by the growth of large trees in these forests. These results emphasize the need of maintaining long-term monitoring efforts to be able to link more explicitly changes in composition, biodiversity and ecosystem services with changes in environmental drivers under climate change scenarios.

References

APG. 2016. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181:1-20. https://doi.org/10.1111/boj.12385.

Asner, G. P., C. B. Anderson, R. E. Martin, D. E. Knapp, R. Tupayachi, et al. 2014. Landscape-scale changes in forest structure and functional traits along an Andes-to-Amazon elevation gradient. Biogeosciences 11(3):843-856. https://doi.org/10.5194/bg-11-843-2014.

Álvarez-Dávila, E., L. Cayuela, S. González-Caro, A. M. Aldana, P. R. Stevenson, et al. 2017. Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLOS ONE 12(3):e0171072. https://doi.org/10.1371/journal.pone.0171072.

Ataroff, M., and L. Sarmiento. 2004. Las unidades ecológicas de los Andes de Venezuela. Pp. 9-26 in E. La Marca and P. Soriano (eds.). Reptiles de Los Andes de Venezuela. Mérida, Venezuela: Fundación Polar, Codepre-ULA, Fundacite-Mérida, Biogeos.

Azuaje, M. 2019. Acumulación y descomposición de hojarasca en un gradiente altitudinal en la selva nublada de La Mucuy (Venezuela). Tesis de pregrado. Universidad de Los Andes, Mérida, Venezuela.

Báez, S., A. Malizia, J. Carilla, C. Blundo, M. Aguilar, et al. 2015. Large-scale patterns of turnover and basal area change in Andean forests. PLOS ONE 10(5):1-14. https://doi.org/10.1371/journal.pone.0126594.

Barlow, J., G. D. Lennox, J. Ferreira, E. Berenguer, A. C. Lees, et al. 2016. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535(7610):144-147. https://doi.org/10.1038/nature18326.

Bax, V., A. Castro-Nunez, and W. Francesconi. 2021. Assessment of potential climate change impacts on montane forests in the Peruvian Andes: Implications for Conservation Prioritization. Forests 12(3):375. https://doi.org/10.3390/f12030375.

Blundo, C., J. Carilla, R. Grau, A. Malizia, L. Malizia, et al. 2021. Taking the pulse of Earth’s tropical forests using networks of highly distributed plots. Biological Conservation 260:108849. https://doi.org/10.1016/j.biocon.2020.108849.

Bradley, R. S., M. Vuille, H. F. Díaz, and W. Vergara. 2006. Threats to water supplies in the tropical Andes. Science 312(5781):1755-1756. https://doi.org/10.1126/science.1128087.

Bruijnzeel, L. A., M. Kappelle, M. Mulligan, F. N. Scatena. 2010. Tropical montane cloud forests: state of knowledge and sustainability perspectives in a changing world, Tropical Montane Cloud Forests: Science for Conservation and Management. https://doi.org/10.1017/CBO9780511778384.074.

Carey, E. V., S. Brown, A. J. R. Gillespie, and A. E. Lugo. 1994. Tree mortality in mature lowland tropical moist and tropical lower montane moist forests of Venezuela. Biotropica 26:255-265. https://doi.org/10.2307/2388846.

Chacón-Moreno, E., M. Rodríguez-Morales, D. Paredes, P. Suárez del Moral, and A. Albarrán. 2021. Impacts of global change on the spatial dynamics of treeline in Venezuelan Andes. Frontiers in Ecology and Evolution 9:615223.

Chain-Guadarrama, A. 2005. Síndromes de dispersión en el mosaico vegetacional de la región de Nizanda (Oaxaca), México. Tesis de licenciatura. Universidad Nacional Autónoma de México, México.

Chave, J., M. Réjou‐Méchain, A. Búrquez, E. Chidumayo, M. S. Colgan, et al. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global change biology 20(10):3177-3190. https://doi.org/10.1111/gcb.12629.

Clarke, K. R., and R. M. Warwick. 2001. Change in marine communities: An approach to statistical analysis and interpretation 2da edición. PRIMER-E: Plymouth.

Cleef, A. M. 1979. The phytogeographical position of the neotropical vascular páramo flora with special reference to the Colombian Cordillera Oriental. Pp. 175-184 in K. Larsen et al. (eds.). Tropical Botany. Academic Press, London. Phytogeography páramo flora Andes.

Cuni-Sánchez, A., M. J. Sullivan, P. J. Platts, S. L. Lewis, R. Marchant, et al. 2021. High aboveground carbon stock of African tropical montane forests. Nature 596 (7873):536-542. https://doi.org/10.1038/s41586-021-03728-4.

Dehling, D. M., G. Peralta, I. M. Bender, P. G. Blendinger, K. Böhning‐Gaese, et al. 2020. Similar composition of functional roles in Andean seed-dispersal networks, despite high species and interaction turnover. Ecology 101(7):e03028. https://doi.org/10.1002/ecy.3028.

Delaney, M., S. Brown, A. E. Lugo, A. Torres-Lezama, and N. B. Quintero. 1997. The distribution of organic carbon in major components of forests located in five life zones of Venezuela. Journal of Tropical Ecology 13(5):697-708. https://doi.org/10.1017/S0266467400010877.

Delaney, M., S. Brown, A. E. Lugo, A. Torres-Lezama, and N. B. Quintero. 1998. The quantity and turnover of dead wood in permanent forest plots in six life zones of Venezuela. Biotropica 30(1):2-11. https://doi.org/10.1111/j.1744-7429.1998.tb00364.x.

Duque, A., M. A. Peña, F. Cuesta, S. González-Caro, P. Kennedy, et al. 2021. Mature Andean forests as globally important carbon sinks and future carbon refuges. Nature Communications 12(1):2138. https://doi.org/10.1038/s41467-021-22459-8.

Duque, A., P. R. Stevenson, and K. J. Feeley. 2015. Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proceedings of the National Academy of Sciences 112(34):10744-10749. https://doi.org/10.1073/pnas.1506570112.

Fadrique, B., S. Báez, Á. Duque, A. Malizia, C. Blundo, et al. 2018. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564(7735):207-212. https://doi.org/10.1038/s41586-018-0715-9.

Feeley, K. J., M. R. Silman, M. B. Bush, W. Farfan, K. G. Cabrera, et al. 2011. Upslope migration of Andean trees. Journal of Biogeography 38(4):783-791. https://doi.org/10.1111/j.1365-2699.2010.02444.x.

Freund, C. A., and M. R. Silman. 2023. Developing a more complete understanding of tropical montane forest disturbance ecology through landslide research. Frontiers in Forests and Global Change 6:1091387. https://doi.org/10.3389/ffgc.2023.1091387.

Gentry, A. H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75:1-34. https://doi.org/10.2307/2399464.

Gentry, A. H. 1995. Patterns of diversity and floristic composition in Neotropical montane forests. Pp. 103-126 in S. P. Churchill, H. Balslev, E. Forero and J. L. Luteyn (eds.). Biodiversity and Conservation Neotropical montane forests. The New York Botanical Garden. URL: tinyurl.com/yc37vsvd.

Girardin, C. A. J., Y. Malhi, L. E. O. C. Aragao, M. Mamani, W. Huaraca Huasco, et al. 2010. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology 16(12):3176-3192. https://doi.org/10.1111/j.1365-2486.2010.02235.x.

Girardin, C. A., W. Farfan-Ríos, K. García, K. J. Feeley, P. M. Jorgensen, et al. 2014. Spatial patterns of above-ground structure, biomass and composition in a network of six Andean elevation transects. Plant Ecology and Diversity 7(1-2):161-171. https://doi.org/10.1080/17550874.2013.820806.

Graham, A. 1995. Development of affinities between Mexican/Central American and Northern South American lowland and lower montane vegetation during the tertiary. Pp. 11-22 in S. Churchill, H. Balslev, E. Forero and J. Luteyn (eds.). Biodiversity and conservation of Neotropical Montane Forests. The New York Botanical Garden, Nueva York.

Grantham, H. S., A. Duncan, T. D. Evans, K. R. Jones, H. L. Beyer, et al. 2020. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nature Communications 11(1):5978. https://doi.org/10.1038/s41467-020-19493-3.

Griffiths, A. R., M. R. Silman, W. Farfan Ríos, K. J. Feeley, K. García Cabrera, et al. 2021. Evolutionary heritage shapes tree distributions along an Amazon-to-Andes elevation gradient. Biotropica 53(1):38-50. https://doi.org/10.1111/btp.12843.

Häger, A. 2010. The effect of climate and soil conditions on tree species turnover in a tropical montane cloud forest in Costa Rica. Revista de Biología Tropical 58(4):1489-1506. https://doi.org/10.15517/rbt.v58i4.5426.

Hammer, O. 2012. Paleontological statistics (PAST). Reference Manual. Natural History Museum University of Oslo, Oslo.

He, X., A. D. Ziegler, P. R. Elsen, Y. Feng, J. C. Baker, et al. 2023. Accelerating global mountain forest loss threatens biodiversity hotspots. One Earth 6(3):303-315. https://doi.org/10.1016/j.oneear.2023.02.005.

Howe, H. F., and J. Smallwood. 1982. Ecology of seed dispersal. Annual Review of Ecology and Systematics 13(1):201-228. https://doi.org/10.1146/annurev.es.13.110182.001221.

Johnson, M. O., D. Galbraith, M. Gloor, H. De Deurwaerder, M. Guimberteau, et al. 2016. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models. Global Change Biology 22(12):3996-4013. https://doi.org/10.1111/gcb.13315.

Kelly, D. L., E. V. J. Tanner, E. N. Lughadha, and V. Kapos. 1994. Floristics and biogeography of a rain forest in the Venezuelan Andes. Journal of Biogeography 21:421-440. https://doi.org/10.2307/2845760.

Kessler, M. 2002. The elevational gradient of Andean plant endemism: varying influences of taxon-specific traits and topography at different taxonomic levels. Journal of Biogeography 29(9):1159-1165. https://doi.org/10.1046/j.1365-2699.2002.00773.x.

Kessler, M., J. A. Grytnes, S. R. Halloy, J. Kluge, T. Krömer, et al. 2011. Gradients of plant diversity: local patterns and processes. Pp. 204-219 in S. K. Herzog, R. Martínez, P. M. Jorgensen and H. Tiessen (eds.). Climate Change and Biodiversity in the Tropical Andes. São José dos Campos, Brazil: Inter-American-Institute of Global Change Research.

Kohyama, T. S., T. I. Kohyama, and D. Sheil. 2018. Definition and estimation of vital rates from repeated censuses: choices, comparisons and bias corrections focusing on trees. Methods in Ecology and Evolution 9(4):809-821. https://doi.org/10.1111/2041-210X.12929.

Krebs, C. J. 1989. Ecological Methodology. New York, NY: Harper and Row Publishers Inc. Pp. 654.

Lamprecht, H. 1954. Estudios silviculturales en los bosques del valle de La Mucuy, cerca de Mérida. Universidad de Los Andes.

Lewis, S. L., O. L. Phillips, D. Sheil, B. Vinceti, T. R. Baker, et al. 2004. Tropical forest tree mortality, recruitment and turnover rates: calculation, interpretation and comparison when census intervals vary. Journal of Ecology 92(6):929-944. https://doi.org/10.1111/j.0022-0477.2004.00923.x.

Lewis, S. L., D. P. Edwards, and D. Galbraith. 2015. Increasing human dominance of tropical forests. Science 349(6250):827-832. https://doi.org/10.1126/science.aaa9932.

Liang, J., J. G. Gamarra, N. Picard, M. Zhou, B. Pijanowski, et al. 2022. Co-limitation towards lower latitudes shapes global forest diversity gradients. Nature Ecology and Evolution 6(10):1423-1437. https://doi.org/10.1038/s41559-022-01831-x.

Linares, A. 2008. análisis florístico y estructural de la vegetación de una selva nublada en un gradiente altitudinal, en La Mucuy, estado Mérida. Tesis Doctoral. Instituto de Ciencias Ambientales y Ecológicas. Universidad de Los Andes. Mérida, Venezuela.

López-González, G., S. L. Lewis, M. Burkitt, and O. L. Phillips. 2011. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. Journal of Vegetation Science 22(4):610-613. https://doi.org/10.1111/j.1654-1103.2011.01312.x.

Malhi, Y. 2012. The productivity, metabolism and carbon cycle of tropical forest vegetation. Journal of Ecology 100(1):65-75. https://doi.org/10.1111/j.1365-2745.2011.01916.x.

Malhi, Y., T. R. Baker, O. L. Phillips, S. Almeida, E. Alvarez, et al. 2004. The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology 10(5):563-591. https://doi.org/10.1111/j.1529-8817.2003.00778.x.

Malhi, Y., C. A. J. Girardin, G. R. Goldsmith, C. E. Doughty, N. Salinas, et al. 2017. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytologist 214(3):1019-1032. https://doi.org/10.1111/nph.14189.

Malhi, Y., O. L. Phillips, J. Lloyd, T. Baker, J. Wright, et al. 2002. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science 13(3):439-450. https://doi.org/10.1111/j.1654-1103.2002.tb02068.x.

Malizia, A., C. Blundo, J. Carilla, O. Osinaga Acosta, F. Cuesta, et al. 2020. Elevation and latitude drive structure and tree species composition in Andean forests: Results from a large-scale plot network. PLOS ONE 15(4):e0231553. https://doi.org/10.1371/journal.pone.0231553.

Mata-Guel, E. O., M. C. K. Soh, C. W. Butler, R. J. Morris, O. Razgour, et al. 2023. Impacts of anthropogenic climate change on tropical montane forests: an appraisal of the evidence. Biological Reviews 98(4):1200-1224. https://doi.org/10.1111/brv.12950.

McCune, B., J. B. Grace, and D. L. Urban. 2002. Analysis of ecological communities, structural equation modeling. Gleneden Beach, OR, USA. https://doi.org/10.1016/S0022-0981(03)00091-1.

Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772):853-858. https://doi.org/10.1038/35002501.

Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, et al. 2017. Package ‘vegan’. Community ecology package version 2(9).

Oliver, C. D., and B. C. Larson. 1996. Forest stand dynamics, update edition. Yale School of the Environment Other Publications. 1. URL: tinyurl.com/2jbbp6e8.

Osinaga, O., S. Báez, F. Cuesta, A. Malizia, J. Carrilla, et al. 2014. Monitoreo de diversidad vegetal y carbono en bosques andinos-Protocolo extendido. Protocolo 2-Versión 1. CONDESAN/IER-UNT/COSUDE. Quito, Ecuador.

Pacheco, E., and M. Ataroff. 2001. Relación precipitación-percolación en una selva nublada andina venezolana. Memorias del IV Simposio Internacional de Desarrollo Sustentable en Los Andes: La estrategia Andina para el siglo XXI. Edición en CD-ROM.

Pacheco, E., and M. Ataroff. 2005. Dinámica ecohidrológica en una selva nublada andina venezolana. Pp. 25-30 in M. Ataroff and J. F. Silva (eds.). Dinámica hídrica en sistemas Neotropicales: Investigaciones en dinámica hídrica de la red RICAS. Instituto de Ciencias Ambientales y Ecológicas (ICAE), Facultad de Ciencias, Universidad de Los Andes, Mérida.

Pennington, R. T., M. Lavin, T. Särkinen, G. P. Lewis, B. B. Klitgaard, et al. 2010. Contrasting plant diversification histories within the Andean biodiversity hotspot. Proceedings of the National Academy of Sciences 107(31):13783-13787. https://doi.org/10.1073/pnas.1001317107.

Phillips, O. L., T. R. Baker, L. Arroyo, N. Higuchi, T. J. Killeen, et al. 2004. Pattern and process in Amazon tree turnover, 1976-2001. Philosophical Transactions of the Royal Society B: Biological Sciences 359(1443):381-407. https://doi.org/10.1098/rstb.2003.1438.

Phillips, O. L., G. Van Der Heijden, S. L. Lewis, G. López‐González, L. E. Aragão, et al. 2010. Drought-mortality relationships for tropical forests. New Phytologist 187(3):631-646. https://doi.org/10.1111/j.1469-8137.2010.03359.x.

Poorter, L., F. Bongers, T. M. Aide, A. M. Almeyda Zambrano, P. Balvanera, et al. 2016. Biomass resilience of Neotropical secondary forests. Nature 530 (7589):211-214. https://doi.org/10.1038/nature16512.

Poorter, L., M. T. Van der Sande, J. Thompson, E. J. M. M. Arets, A. Alarcón, et al. 2015. Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography 24(11):1314-1328. https://doi.org/10.1111/geb.12364.

Quesada, C. A., O. L. Phillips, M. Schwarz, C. I. Czimczik, T. R. Baker, et al. 2012. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9(6):2203-2246. https://doi.org/10.5194/bg-9-2203-2012.

Quevedo-Rojas, A., M. Jerez-Rico, T. Schwarzkopf Kratzer, and C. García-Núñez. 2016. Distribution of juveniles of tree species along a canopy closure gradient in a tropical cloud forest of the Venezuelan Andes. IForest 9(3):363-369. https://doi.org/10.3832/ifor1568-008.

R Development Core Team. 2022. R: A language and environment for statistical computing.

Ramírez, S., S. González-Caro, J. Phillips, E. Cabrera, K. J. Feeley, et al. 2019. The influence of historical dispersal on the phylogenetic structure of tree communities in the tropical Andes. Biotropica 51(4):500-508. https://doi.org/10.1111/btp.12661.

Réjou-Méchain, M., A. Tanguy, C. Piponiot, J. Chave, and B. Hérault. 2017. Biomass: an R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol Evol 8(9):1163-1167. https://doi.org/10.1111/2041-210X.12753.

Rozendaal, D. M. A., D. Requena Suarez, V. De Sy, V. Avitabile, S. Carter, et al. 2022. Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests. Environmental Research Letters 17(1):014047. https://doi.org/10.1088/1748-9326/ac45b3.

Salinas, N., E. G. Cosio, M. Silman, P. Meir, A. T. Nottingham, et al. 2021. Editorial: Tropical Montane Forests in a Changing Environment. Frontiers in Plant Science 12:712748. https://doi.org/10.3389/fpls.2021.712748.

Saupe, E. E., C. E. Myers, A. Townsend Peterson, J. Soberón, J. Singarayer, et al. 2019. Spatio-temporal climate change contributes to latitudinal diversity gradients. Nature Ecology and Evolution 3(10):1419-1429. https://doi.org/10.1038/s41559-019-0962-7.

Schwarzkopf, T., S. J. Riha, T. J. Fahey, and S. Degloria. 2011. Are cloud forest tree structure and environment related in the Venezuelan Andes? Austral Ecology 36(3):280-289. https://doi.org/10.1111/j.1442-9993.2010.02160.x.

Sheil, D. 1995. A critique of permanent plot methods and analysis with examples from Budongo Forest, Uganda. Forest Ecology and Management 77(1-3):11-34. https://doi.org/10.1016/0378-1127(95)03583-V.

Slik, J. W. F., G. Paoli, K. Mcguire, I. Amaral, J. Barroso, et al. 2013. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography 22(12):1261-1271. https://doi.org/10.1111/geb.12092.

Spracklen, D. V., and R. Righelato. 2014. Tropical montane forests are a larger than expected global carbon store. Biogeosciences 11(10):2741-2754. https://doi.org/10.5194/bg-11-2741-2014.

Stansell, N. D., M. B. Abbott, P. J. Polissar, A. P. Wolfe, M. Bezada, et al. 2005. Late quaternary deglacial history of the Mérida Andes, Venezuela. Journal of Quaternary Science 20(7-8):801-812. https://doi.org/10.1002/jqs.973.

Stephenson, N. L., A. J. Das, R. Condit, S. E. Russo, P. J. Baker, et al. 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature 507(7490):90-93. https://doi.org/10.1038/nature12914.

Swaine, M. D., D. Lieberman, and F. E. Putz. 1987. The dynamics of tree populations in tropical forest: a review. Journal of Tropical Ecology 3(4):359-366. https://doi.org/10.1017/S0266467400002339.

Trujillo-C, W., and M. M. Henao-Cárdenas. 2018. Riqueza florística y recambio de especies en la vertiente orinoquense de los andes, Colombia. Colombia Forestal 21(1):18-33. https://doi.org/10.14483/2256201X.11848.

Tropicos.org. 2023. Missouri Botanical Garden. 29 May 2023.

Van der Hammen, T. 2000. Aspectos de historia y ecología de la biodiversidad norandina y amazónica. Revista de la Academia Colombiana de Ciencias 24(91):231-245.

Van der Hammen, T., and A. Cleef. 1983. Datos para la historia de la flora andina. Revista Chilena de Historia Natural 56(2):97-107.

Van der Pijil, L. 1982. Principles of dispersal in higher plants. Vol. 214. Springer-Verlag, Berlín. https://doi.org/10.1007/978-3-642-87925-8.

Vera, D. 2006. Análisis de la dinámica de árboles en el bosque nublado San Eusebio, la Carbonera, estado Mérida, Venezuela. Trabajo de grado. Facultad de Ciencias Forestales y Ambientales. Universidad de Los Andes.

Vilanova, E., H. Ramírez-Angulo, A. Torres-Lezama, G. Aymard, L. Gámez, et al. 2018. Environmental drivers of forest structure and stem turnover across Venezuelan tropical forests. PLOS ONE 13(6):1-27. https://doi.org/10.1371/journal.pone.0198489.

Vilanova, E. 2019. Patterns and processes in tropical forests: an analysis of forest structure and function from long-term permanent plots in Venezuela, Northern South America. PhD dissertation, University of Washington, Seattle, USA. URL: tinyurl.com/yy47dxza.

Webster, G. L., S. P. Churchill, H. Balslev, E. Forero, and J. L. Luteyn. 1995. The panorama of Neotropical cloud forests. Pp. 53-77 in Biodiversity and Conservation of Neotropical Montane Forests. Neotropical Montane Forest Biodiversity and Conservation Symposium 1, 1995. New York Botanical Garden. New York.

WFO: World flora online. 2023. Published on the Internet. URL: worldfloraonline.org.

Wright, S. J., K. Kitajima, N. J. B. Kraft, P. B. Reich, I. J. Wright, et al. 2010. Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91(12):3664-3674. https://doi.org/10.1890/09-2335.1.

Zanne, A. E., G. López-González, D. A. Coomes, J. Ilic, S. Jansen, et al. 2009. Data from: towards a worldwide wood economics spectrum. https://doi.org/10.5061/dryad.234.

Diversity, structure and dynamics of tropical montane forests: Insights from permanent-plot monitoring in the Venezuelan Andes

Downloads

Published

2024-06-22

How to Cite

Sánchez, M. E., Llambí, L. D., Gámez, L. E., Rodríguez, G., Pelayo, R., Ataroff, M., & Vilanova, E. (2024). Diversity, structure and dynamics of tropical montane forests: Insights from permanent-plot monitoring in the Venezuelan Andes. Ecología Austral, 34(2), 286–304. https://doi.org/10.25260/EA.24.34.2.0.2349