Floods of the last three decades in the Inner Pampa and their relationship with regional rainfall

Authors

  • Luciano Rainhart Facultad de Agronomía, Universidad Nacional de La Pampa. La Pampa, Argentina
  • Héctor R. Peinetti Facultad de Agronomía, Universidad Nacional de La Pampa. La Pampa, Argentina
  • Elke J. Noellemeyer Facultad de Agronomía, Universidad Nacional de La Pampa. La Pampa, Argentina

DOI:

https://doi.org/10.25260/EA.24.34.1.0.2374

Keywords:

Pampean Region, Río Quinto, mitigation, surfaces water, regional hydrology

Abstract

Floods in the Pampean Region have a detrimental direct effect on plant production through crop flooding and soil salinization. Understanding the hydrological drivers of landscape flooding contributes to the implementation of more efficient mitigation actions. In this study, we determine the spatio-temporal dynamics of the surfaces water (SW) in the central portion of the Inner Pampean subregion and its relationship with regional rainfall records during the last 33 years (1987 to 2019). SW was estimated from spectral indices derived from satellite images (Landsat and MODIS) with a target temporal frequency of 6 months. The rainfall regime was characterized by monthly precipitation maps generated by interpolation of records from regional rain gauges. Two drainage basins were differentiated in the study region through a topographic analysis. They were designated as north basin (2.1 Mha), that includes the main channel of the Quinto River, and south basin (6.7 Mha). We found that flood periods (i.e., SW anomalies in the percentile range of percentiles [100:<90]) were short (~2 years) and recurrent. There were two flooding events in both basins (2001/02 and 2016/17) and an additional event in the south basin (1987/88). In both basins, the temporal dynamics of the SW was poorly associated with short (3 month) or long (3 years) term accumulated rainfall water. Although all flood events corresponded to positive rainfall anomalies, not all positive rainfall anomalies corresponded with large SW. The observed low predictive power of rainfall constitutes an indication that SW anomalies are also coupled to incoming regional surface and groundwater. Therefore, flood mitigation strategies should primarily aim at deepening groundwater levels by maintaining high evapotranspiration rates.

References

Ahmad A., and S. Quegan. 2012. Analysis of maximum likelihood classification on multispectral data. Appl Math Sci 6(129):6425-6436.

Alaghmand, S., S. Beecham, and A. Hassanli. 2014. Impacts of vegetation cover on surface-groundwater flows and solute interactions in a semi-arid saline floodplain: A case study of the lower Murray River, Australia. Environmental Processes 1:59-71. https://doi.org/10.1007/s40710-014-0003-0.

Aldardasawi, A. F. M., and B. Eren. 2021. Floods and Their Impact on the Environment. Academic Perspective Procedia 4:42-49. https://doi.org/10.33793/acperpro.04.02.24.

Alexander, L. V., X. Zhang, T. C. Peterson, J. Caesar, B. Gleason, A. M. G. K. Tank, et al. 2006. Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmos 111:1-22. https://doi.org/10.1029/2005JD006290.

Ameghino, F. 1984. Las secas y las inundaciones en la Provincia de Buenos Aires. Obras de retención y no de desagüe 1884-1984. Repositorio digital Naturalis. Ministerio de Asuntos Agrarios de la Provincia de Buenos Aires, La Plata, Argentina.

Aliaga, V. S., M. C. Piccolo, and G. M. E. Perillo. 2021. Surface water extent dynamics from three periods of continuous landsat time series; subregional differences across Argentine plains. Revista de Teledetección 58:131-145. https://doi.org/10.4995/RAET.2021.14263.

Aragón, R., E. G. Jobbágy, and E. F. Viglizzo. 2010. Surface and groundwater dynamics in the sedimentary plains of the Western Pampas (Argentina), Ecohydrology 4(3):433-447. https://doi.org/10.1002/eco.149.

Archer, N., R. A. Bell, A. S. Butcher, and S. H. Bricker. 2020. Infiltration efficiency and subsurface water processes of a sustainable drainage system and consequences to flood management. J Flood Risk Management 13(3):e12629. https://doi.org/10.1111/jfr3.12629.

Barros, V. R., J. A. Boninsegna, I. A. Camilloni, M. Chidiak, G. O. Magrín, and M. Rusticucci. 2015. Climate change in Argentina: trends, projections, impacts and adaptation. Wiley Interdiscipy Rev Clim Change 6(2):151-169. https://doi.org/10.1002/wcc.316.

Barros, V. R., A. Menéndez, and G. Nagy. 2006. El cambio climático en el Río de la Plata. Centro de Investigaciones del Mar y la Atmósfera (CIMA). Libros del Zorzal, Buenos Aires, Argentina. Pp. 174.

Bécher-Quinodóz, F. N. , M. T. Blarasin, and H. O. Panarello. 2015. Modelado geoquímico e isotópico de las relaciones agua superficial-subterránea. Revista de la Asociación Geológica Argentina 72(4):506-518.

Carignano, C. A. 1999. Late Pleistocene to recent climate change in Córdoba Province, Argentina: Geomorphological evidence. Quaternary International 57/58:117-134. https://doi.org/10.1016/S1040-6182(98)00054-8.

Casagrande, G. A., G. T. Vergara, and Y. N. Bellini Saibene. 2006. Cartas agroclimáticas actuales de temperaturas, heladas y lluvia de la provincia de La Pampa (Argentina). Semiárida. UNLPam 17:15-22. URL: repo.unlpam.edu.ar/handle/unlpam/6041.

Chaneton, E. J. 2006. Las inundaciones en pastizales pampeanos.: Impacto ecológico de las perturbaciones naturales. Ciencia Hoy 16(92):18-32.

Contreras, S., M. D. Nosetto, S. Calderón, and E. G. Jobbágy. 2008. Impacto de las aguas subterráneas en la producción de agroecosistemas: modelación acoplada a través del código VegNap. XXIII Reunión Argentina de Ecología, San Luis, Argentina.

Depetris, P. J. 2007. The Paraná river under extreme flooding: a hydrological and hydro-geochemical insight. Interciencia 32(10):656-662.

Devitt, L., J. Neal, G. Coxon, J. Savage, and T. Wagener. 2023. Flood hazard potential reveals global floodplain settlement patterns. Nat Commun 14:2801. https://doi.org/10.1038/s41467-023-38297-9.

Dornes, P., E. Mariño, and C. Schulz. 2015. Inventario de los recursos hídricos de la provincia de La Pampa. UNLPam-Consultora.

Durieux, L., L. A. Toledo Machado, and H. Laurent. 2003. The impact of deforestation on cloud cover over the Amazon arc of deforestation. Remote Sensing of Environment 86:132-140. https://doi.org/10.1016/S0034-4257(03)00095-6.

Fathy, I., A. Ahmed, and H. Abd-Elhamid. 2021. Integrated management of surface water and groundwater to mitigate flood risks and water scarcity in arid and semi-arid regions. J Flood Risk Manag 14(3):e12720. https://doi.org/10.1111/jfr3.12720.

Fan, Y., H. Li, and G. Miguez-Macho. 2013. Global patterns of groundwater table depth. Science 339(6122):940-943. https://doi.org/10.1126/science.1229881.

Fuschini Mejía, M. C. 1994. El agua en las llanuras. UNESCO Regional Office for Science and Technology for Latin America and the Caribbean (Uruguay).

Giménez, R., J. L. Mercau, F. E. Bert, S. Kuppel, G. Baldi, J. Houspanossian, P. M. Magliano, and E. G. Jobbágy. 2020. Hydrological and productive impacts of recent land-use and land-cover changes in the semiarid Chaco: Understanding novel water excess in water scarce farmlands. Ecohydrology 13:e2243. https://doi.org/10.1002/eco.2243.

Hall, A. J., C. M. Rebella, C. M. Ghersa, and J. P. Culot. 1992. Field-crop systems of the Pampas. Pp. 413-450 en C. J. Pearson (ed.). Ecosystems of the World. Elsevier (Netherlands).

Hoffmann, W. A., and R. B. Jackson. 2000. Vegetation-Climate Feedbacks in the Conversion of Tropical Savanna to Grassland. American Meteorological Society 13(9):1593-1602. https://doi.org/10.1175/1520-0442(2000)013%3C1593:VCFITC%3E2.0.CO;2.

Houspanossian, J., R. Giménez, J. I. Whitworth-Hulse, M. D. Nosetto, W. Tych, P. M. Atkinson, M. C. Rufino, and E. G. Jobbágy. 2023. Agricultural expansion raises groundwater and increases flooding in the South American plains. Science 380:6652. https://doi.org/10.1126/science.add5462.

Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson. 2001. Climate Change 2001: The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change Published for the Intergovernmental Panel on Climate Change. Cambridge University Press.

IPCC 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. En C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K L. Ebi, M. D. Mastrandrea, K. J. Mach, G. K. Plattner, S. K. Allen, M. Tignor and P. M. Midgley (eds.). Cambridge Univ. Press. Pp. 582.

Jensen, R., M. Marazzi, J. Savioli, J. Brea, and H. Tavecchio. 2000. Diagnóstico de la situación de inundación en la región noreste de la Provincia de La Pampa, Argentina. Gobierno de la provincia de La Pampa, inédito.

Jobbágy, E. G., and M. D. Nosetto. 2009. Napas freáticas: pautas para comprender y manejar su impacto en la producción. XVII Congreso Nacional de AAPRESID. Argentina.

Jobbágy, E. G., and M. D. Nosetto. 2015. Las napas freáticas superficiales como agente de degradación de suelos. Pp. 287-300 en R. Casas and G. Albarracín (eds.). El deterioro del suelo y del ambiente en la Argentina, Buenos Aires, Editorial FECIC, Tomo I.

Jobbágy, E. G., M. D. Nosetto, C. S. Santoni, and G. Baldi. 2008. El desafío ecohidrológico de las transiciones entre sistemas leñosos y herbáceos en la llanura Chaco-Pampeana. Ecología Austral 18:305-322. URL: ref.scielo.org/8svm2v.

Jones, B. M., G. D. A. C. Grosse, C. D. Arp, M. C. Jones, K. W. Anthony, and V. E. Romanovsky. 2011. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. Journal of Geophysical Research: Biogeosciences 116:G00M03. https://doi.org/10.1029/2011JG001666.

Keating, B. A., D. Gaydon, N. I. Huth, M. E. Probert, K. Verburg, C. J. Smith, and W. Bond. 2002. Use of modelling to explore the water balance of dryland farming systems in the Murray-Darling Basin, Australia. European Journal of Agronomy 18:159-169. https://doi.org/10.1016/S1161-0301(02)00102-8.

Kuppel, S., J. Houspanossian, M. D. Nosetto, and E. G. Jobbágy. 2015. What does it take to flood the Pampas?: Lessons from a decade of strong hydrological fluctuations. Water Resources Research 51:2937-2950. https://doi.org/10.1002/2015WR016966.

León R.J.C. (1991). – Geographic limits of the region, geomorphology and geology, regional subdivisions, floristic aspects, description of the vegetation. Pp. 369-387 en R.T. Coupland (coord.). Natural grasslands: introduction and western hemisphere. Elsevier, Amsterdam, Países Bajos.

León, R. J. C. 1992. Río de la Plata grasslands. Regional sub-divisions. Pp. 376-407 en R. T. Coupland (coord.). Ecosystems of the World 8A: Natural Grasslands, Elsevier, Amsterdam.

Mokhtari, A., H. Noory, M. Vazifedoust, M. Palouj, A. Bakhtiari, E. Barikani, R. A. Zabihi Afrooz, F. Fereydooni, et al. 2019. Evaluation of single crop coefficient curves derived from Landsat satellite images for major crops in Iran. Agricultural Water Management 218:234-249. https://doi.org/10.1016/J.AGWAT.2019.03.024.

Nosetto, M. D., E. G. Jobbágy, A. B. Brizuela, R. B. Jackson. 2012. The hydrologic consequences of land cover change in central Argentina. Agriculture, Ecosystems and Environment 154:2-11. https://doi.org/10.1016/J.AGEE.2011.01.008.

Nosetto, M. D., R. A. Páez, S. I. Ballesteros, and E. G. Jobbágy. 2015. Higher water-table levels and flooding risk under grain vs. livestock production systems in the subhumid plains of the Pampas. Agriculture, Ecosystems and Environment 206:60-70. https://doi.org/10.1016/j.agee.2015.03.009.

Oliva, G. 2019. Manejo de pastizales naturales en Argentina. XXV Reunión Del Grupo Técnico Regional Del Cono Sur En Mejoramiento y Utilización de Los Recursos Forrajeros Del Área Tropical y Subtropical.

Potapov, P., S. Turubanova, M. C. Hansen, A. Tyukavina, V. Zalles, A. Khan, X. P. Song, A. Pickens, Q. Shen, and J. Cortez. 2022. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat Food 3:19-28. https://doi.org/10.1038/s43016-021-00429-z.

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: R-project.org.

Ridley, A. M., B. Christy, F. X. Dunin, P. J. Haines, K. F. Wilson, and A. Ellington. 2001. Lucerne in crop rotations on the Riverine Plains. 1. The soil water balance. Australian Journal of Agricultural Research 52:263-277. https://doi.org/10.1071/AR99165.

Roach, J. K., B. Griffith, and D. Verbyla. 2013. Landscape influences on climate-related lake shrinkage at high latitudes. Global Change Biology 19:2276-2284. https://doi.org/10.1111/gcb.12196.

SAGyP, and INTA 1990. Atlas de suelos de la República Argentina. Secretaría de Agricultura, Ganadería y Pesca; Proyecto PNUD ARG. 85/019; Instituto Nacional de Tecnología Agropecuaria.

Smolenaars, W. J., S. Paparrizos, S. Werners, and F. Ludwig. 2021. Flood Risk and Adaptation Strategies for Soybean Production Systems on the Flood-Prone Pampas under Climate Change. Agronomy 11(6):1187. https://doi.org/10.3390/agronomy11061187.

Sonu, T. S., C. Mohammed Firoz, and A. Bhagyanathan. 2022. The impact of upstream land use land cover change on downstream flooding: A case of Kuttanad and Meenachil River Basin, Kerala, India. Urban Climate 41:101089. https://doi.org/10.1016/j.uclim.2022.101089.

Soriano, A., R. J. C. León, O. E. Sala, R. Lavado, V. A. Deregibus, M. A. Cahuepé, O. A. Scaglia, C. A. Velázquez, and J. H. Lemcoff. 1991. Río de la Plata Grasslands. Pp. 367-407 en R. T. Coupland (coord.). Ecosystems of the World. Natural Grasslands. Introduction and Western Hemisphere. Ed. Elsevier, Amsterdam.

Taboada, M. A., F. Damiano, and R. S. Lavado. 2009. Inundaciones en la Región Pampeana. Consecuencias sobre los suelos. Alteraciones de la fertilidad de los suelos: el halomorfismo, la acidez, el hidromorfismo y las inundaciones. Buenos Aires: EFA-INTA. Pp. 103-127.

Tóth, J. 1978. Gravity induced cross-formational flow of formation fluids, Red Earth Region, Alberta, Canada: Analysis, patterns and evolution. Water Resources Research 14:805-843. https://doi.org/10.1029/WR014i005p00805.

Viglizzo, E. F., F. A. Lértora, A. J. Pordomingo, J. Bernardos, Z. E. Roberto, and H. del Valle. 2001. Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agriculture, Ecosystems and Environment 81:65-81. https://doi.org/10.1016/S0167-8809(00)00155-9.

Viglizzo, E. F., and F. C. Frank. 2006. Ecological interactions, feedbacks, thresholds and collapses in the Argentine Pampas in response to climate and farming during the last century. Quaternary International 158(1):122-126. https://doi.org/10.1016/j.quaint.2006.05.022.

Whitworth-Hulse, J. I., E. G. Jobbágy, L. Borrás, S. E. Alsina, J. Houspanossian, and M. D. Nosetto. 2023. The expansion of rainfed grain production can generate spontaneous hydrological changes that reduce climate sensitivity. Agriculture, Ecosystems and Environment 349:10844. https://doi.org/10.1016/j.agee.2023.108440.

Xu, H. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing 27:3025-3033. https://doi.org/10.1080/01431160600589179.

Zilio, M. C., M. Aranda Álvarez, A. Zamponi, and M. F. Roggiero. 2022. Agriculturización y sapping en San Luis y Córdoba: señal antropocénica. Pp. 258-271 en M. C. Zilio, G. M. D'Amico and S. Báez (coords.). Volcán antropogénico: Una mirada geográfica sobre procesos geológicos y geomorfológicos. Editorial de la Universidad Nacional de La Plata (EDULP). https://doi.org/10.35537/10915/147529.

Floods of the last three decades in the Inner Pampa and their relationship with regional rainfall

Published

2024-02-13

How to Cite

Rainhart, L., Peinetti, H. R., & Noellemeyer, E. J. (2024). Floods of the last three decades in the Inner Pampa and their relationship with regional rainfall. Ecología Austral, 34(1), 121–133. https://doi.org/10.25260/EA.24.34.1.0.2374