Challenges and obstacles to making open biodiversity data available in Uruguay

Authors

  • Florencia Grattarola 1 Biodiversidata: Consorcio de Datos de Biodiversidad del Uruguay. 2 Faculty of Environmental Sciences, Czech University of Life Sciences Prague. Praha, Czech Republic https://orcid.org/0000-0001-8282-5732
  • Gabriel Laufer Biodiversidata: Consorcio de Datos de Biodiversidad del Uruguay. Vida Silvestre Uruguay. Montevideo, Uruguay. Museo Nacional de Historia Natural. Montevideo, Uruguay https://orcid.org/0000-0002-8285-5023
  • Lucía Rodríguez-Tricot Biodiversidata: Consorcio de Datos de Biodiversidad del Uruguay. Departamento de Ecología y Gestión Ambiental. Centro Universitario Regional del Este, Universidad de la República. Maldonado, Uruguay https://orcid.org/0000-0003-0949-9074
  • Enrique M. González Biodiversidata: Consorcio de Datos de Biodiversidad del Uruguay. Museo Nacional de Historia Natural. Montevideo, Uruguay
  • Franco Teixeira de Mello Biodiversidata: Consorcio de Datos de Biodiversidad del Uruguay. Departamento de Ecología y Gestión Ambiental. Centro Universitario Regional del Este, Universidad de la República. Maldonado, Uruguay https://orcid.org/0000-0003-4904-6985

DOI:

https://doi.org/10.25260/EA.24.34.3.0.2413

Keywords:

open science, data management, data-sharing, scientific collections, GBIF, rewards and incentives

Abstract

The new challenges posed by global change require us to have quality data that will allow us to monitor biodiversity and stop its loss. At present, however, the Uruguayan state and its various ministries do not make primary data available. There is no open information available on specimens in national collections or cross-cutting institutional policies regarding access to data and scientific information financed with public funds. To begin to reverse this panorama, Biodiversidata, the Uruguay Biodiversity Data Consortium was created in 2018. Despite the progress achieved by this initiative (e.g., publishing the first open biodiversity data for the country), the number of digitized data in the country is the lowest in the region. Why are there so few open biodiversity data in Uruguay? The roundtable Biodiversity Open Data in Uruguay was developed to reflect on this issue. The main question to be addressed was: what are the difficulties or barriers in this country for open data? We focus on the following stages in the generation of open data: a) collection, and b) management and publication of the data. We found that the main obstacles in the first stages of the process are institutional obstacles to data collection (e.g., collection permits), the lack of support for biological collections in the country, and the absence of common standards for data collection. On the other hand, in the final stages of the data generation process, the main obstacles are the lack of knowledge about managing and publishing open data, the lack of a data-sharing culture, and the lack of incentives to do so. In this paper, we describe the obstacles identified and offer a series of proposals to overcome them.

References

Aono, Y., and K. Kazui. 2008. Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. International Journal of Climatology 28:905-914. https://doi.org/10.1002/joc.1594.

Beigel, M. F. 2022. El proyecto de ciencia abierta en un mundo desigual. Relaciones Internacionales (50):163-181. https://doi.org/10.15366/relacionesinternacionales2022.50.008.

Bezuidenhout, L. 2019. To share or not to share: Incentivizing data sharing in life science communities. Developing World Bioethics 19:18-24. https://doi.org/10.1111/dewb.12183.

Bezuidenhout, L., and E. Chakauya. 2018. Hidden concerns of sharing research data by low/middle-income country scientists. Global Bioethics 29:39-54. https://doi.org/10.1080/11287462.2018.1441780.

Cohanoff, C., D. Prieto, F. Grattarola, J. Maldini, N. Gras, P. Díaz Charquero, and S. Ravía. 2022. September 11. Ciencia abierta en el MERCOSUR: situación y recomendaciones. Grupo de trabajo convocado por la Dirección Nacional de Innovación Ciencia y Tecnología del Ministerio de Educación y Cultura (DICYT) Uruguay.

D’Elia, G. 2024. Las colecciones biológicas de Chile deben potenciarse. Anales del Instituto de la Patagonia 52. https://doi.org/10.22352/AIP202452002.

Dornelas, M., H. Antão Laura, F. Moyes, E. Bates Amanda, E. Magurran Anne, D. Adam, et al. 2018. BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography 27:760-786. https://doi.org/10.1111/geb.12729.

Finn, C., F. Grattarola, and D. Pincheira-Donoso. 2023. More losers than winners: investigating Anthropocene defaunation through the diversity of population trends. Biological Reviews 98:1732-1748. https://doi.org/10.1111/brv.12974.

Funk, V. A. 2018. Collections-based science in the 21st Century. Journal of Systematics and Evolution 56:175-193. https://doi.org/10.1111/jse.12315.

Grattarola, F. 2018. September 3. Biodiversidata - Una propuesta de ciencia abierta en Uruguay.

Grattarola, F. 2024. March 6. Mesa Redonda Datos abiertos de biodiversidad en Uruguay.

Grattarola, F., J. A. Martínez-Lanfranco, G. Botto, D. E. Naya, R. Maneyro, P. Mai, D. Hernández, et al. 2020. Multiple forms of hotspots of tetrapod biodiversity and the challenges of open-access data scarcity. Scientific Reports 10:22045. https://doi.org/10.1038/s41598-020-79074-8.

Grattarola, F., and D. Pincheira-Donoso. 2019. Data-sharing en Uruguay, la visión de los colectores y usuarios de datos. Boletín de la Sociedad Zoológica del Uruguay 28:1-14.

Guralnick, R. P., L. P. Campbell, and M. W. Belitz. 2023. Weather anomalies more important than climate means in driving insect phenology. Communications Biology 6:1-9. https://doi.org/10.1038/s42003-023-04873-4.

IPBES. 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Pp. 56. IPBES Secretariat, Bonn, Germany.

Kühl, H. S., D. E. Bowler, L. Bösch, H. Bruelheide, J. Dauber, D. Eichenberg, N. Eisenhauer, N. Fernández, et al. 2020. Effective Biodiversity Monitoring Needs a Culture of Integration. One Earth 3:462-474. https://doi.org/10.1016/j.oneear.2020.09.010.

Laufer, G., N. Gobel, N. Kacevas, I. Lado, S. Cortizas, D. Arrieta, C. Prigioni, C. Borteiro, and F. Kolenc. 2021. Updating the distributions of four Uruguayan hylids (Anura: Hylidae): recent expansions or lack of sampling effort? Amphib. Reptile Conserv 15.

Linek, S. B., B. Fecher, S. Friesike, and M. Hebing. 2017. Data sharing as social dilemma: Influence of the researcher’s personality. PLoS ONE 12:e0183216. https://doi.org/10.1371/journal.pone.0183216.

McKiernan, E. C., P. E. Bourne, C. T. Brown, S. Buck, A. Kenall, J. Lin, D. McDougall, B. A. Nosek, et al. 2016. How open science helps researchers succeed. eLife 5:e16800. https://doi.org/10.7554/eLife.16800.

McLean, B. S., and R. P. Guralnick. 2021. Digital biodiversity data sets reveal breeding phenology and its drivers in a widespread North American mammal. Ecology 102:e03258. https://doi.org/10.1002/ecy.3258.

Ministerio de Vivienda Ordenamiento Territorial y Medio Ambiente. 2016. Estrategia Nacional para la Conservación y Uso Sostenible de la Diversidad Biológica del Uruguay 2016 - 2020.

Pereira, H. M., S. Ferrier, M. Walters, G. N. Geller, R. Jongman, R. J. Scholes, M. W. Bruford, N. Brummitt, S. Butchart, and A. Cardoso. 2013. Essential biodiversity variables. Science 339:277-278. https://doi.org/10.1126/science.1229931.

Peterson, A. T., A. Asase, D. A. L. Canhos, S. de Souza, and J. Wieczorek. 2018. Data Leakage and Loss in Biodiversity Informatics. Biodiversity Data Journal 6. https://doi.org/10.3897/BDJ.6.e26826.

Roll, U., A. Feldman, M. Novosolov, A. Allison, A. M. Bauer, R. Bernard, M. Bohm, et al. 2017. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat Ecol Evol 1:1677-1682. https://doi.org/10.1038/s41559-017-0332-2.

Schiltz, M. 2018. Science without publication paywalls: cOAlition S for the realisation of full and immediate Open Access. PLOS Biology 16:e3000031. https://doi.org/10.1371/journal.pbio.3000031.

Soberón, J., and T. Peterson. 2004. Biodiversity informatics: managing and applying primary biodiversity data. Philosophical Transactions of the Royal Society of London B: Biological Sciences 359:689-698. https://doi.org/10.1098/rstb.2003.1439.

Soutullo, A., and E. Gudynas. 2006. How effective is the MERCOSUR’s network of protected areas in representing South America’s ecoregions? Oryx 40:112-116. https://doi.org/10.1017/S0030605306000020.

Tonella, L. H., R. Ruaro, V. S. Daga, D. A. Z. Garcia, O. B. Vitorino Júnior, T. Lobato-de Magalhães, et al. 2023. Neotropical freshwater fishes: A dataset of occurrence and abundance of freshwater fishes in the Neotropics. Ecology 104:e3713.

UNESCO. 2021. Recomendación de la UNESCO sobre la Ciencia Abierta. UNESCO.

World Bank Open Data. 2024. Gasto en investigación y desarrollo (% del PIB). URL: data.worldbank.org.

Yoccoz, N. G., J. D. Nichols, and T. Boulinier. 2001. Monitoring of biological diversity in space and time. Trends in Ecology and Evolution 16:446-453. https://doi.org/10.1016/S0169-5347(01)02205-4.

Zurell, D., S. A. Fritz, A. Rönnfeldt, and M. J. Steinbauer. 2023. Predicting extinctions with species distribution models. Cambridge Prisms: Extinction 1:e8. https://doi.org/ 10.1017/ext.2023.5.

Published

2024-09-19

How to Cite

Grattarola, F., Laufer, G., Rodríguez-Tricot, L., González, E. M., & Teixeira de Mello, F. (2024). Challenges and obstacles to making open biodiversity data available in Uruguay. Ecología Austral, 461–469. https://doi.org/10.25260/EA.24.34.3.0.2413

Issue

Section

Forum