Multiple spectral indices to predict the variability of structural and functional attributes in arid areas

Authors

  • Mariana A. Buzzi Departamento de Biología y Ambiente. Facultad de Ciencias Naturales y de la Salud. UNPSJB. Comodoro Rivadavia, Chubut, Argentina. Grupo de Estudios Biofísicos y Ecofisiológicos (GEBEF)-CONICET.
  • Bárbara L. Rueter Departamento de Biología y Ambiente. Facultad de Ciencias Naturales y de la Salud. UNPSJB. Comodoro Rivadavia, Chubut, Argentina.
  • Luciana Ghermandi Laboratorio Ecotono, Universidad Nacional del Comahue, INIBIOMA-CONICET, Bariloche, Río Negro, Argentina.

DOI:

https://doi.org/10.25260/EA.17.27.1.0.315

Abstract

Argentinean Patagonia, the main driving forces of degradation are the extractive activities (oil and mining) and sheep ranching. Determine the ability of spectral indices to predict the spatial variability of structural and functional attributes of arid ecosystems would help to identify patterns associated with desertification or passive restoration. One of the main problems in these environments is their large territorial extension. Thus, remote sensing indices could be useful tools for assessing these areas. The aim of this study was to evaluate the ability of multiple spectral indices SPOT 5 satellite to predict the spatial variability of a structural attribute (perennial vegetation cover) and of a functional attribute (forage production) in arid areas. We assessed the relationship of seven spectral indices obtained from the satellite SPOT 5 in 39 sites located in three landscape units: coastal valleys (n=7), plateaus (n=18) and eastern valleys (n=18) in central Patagonia (Argentina). The green normalized difference vegetation index (GNDVI), the two modified soil adjusted vegetation index (MSAVI2), the ratio vegetation index (RVI) and the normalized difference vegetation index (NDVI) were the best predictors of perennial vegetation coverat landscape level. The spectral indices accounted for more than 34% of the variation in forage production in whole study area and for more than 60% in the western valleys. Our results show that spectral indices from satellite SPOT 5, mainly the GNDVI, the MSAVI2, the NDVI and the RVI, are appropriate tools to predict changes of the structure and function of the vegetation at landscape units level in arid zones.

References

Ares, J. O., A. M. Bertiller, C. M. Rostagno, M. P. Irisarri, J. Anchorena, et al. 1990. Structural and dynamic characteristics of overgazed grasslands of northern Patagonia, Argentina. Pp. 149-175 in: A. Breymeyer (ed.). Managed grasslands: Regional Studies.Elsevier, Amsterdam.

Beeskow, A. M., H. Del Valle, and C. M. Rostagno. 1987. Los Sistemas Fisiográficos de la Región Árida y Semiárida de la Provincia del Chubut. SECYT. Puerto Madryn, Chubut, Argentina. Pp. 143.

Bertolami, M. A., B. L. Rueter, and M. E. Benítez. 2005. Estimación de la producción forrajera a partir de valores pastoral en el sudeste del Chubut-Argentina. Multequina 14:29-38.

Bulcock, H. H., and G. P. Jewitt. 2010. Spatial mapping of leaf area index using hyper-spectral remote sensing for hydrological applications with a particular focus on canopy interception. Hydrol Earth Syst Sci 14:383-392, doi: 10.5194/hess-14-383-2010.

Buzzi, M., M. A. Bertolami, and B. L. Rueter. 2013. Delimitación de unidades de paisaje en Patagonia Central. Revista de la Asociación de Ecología de Paisaje 4(2):211-218.

Cabrera, A. L. 1976. Regiones fitogeográficas argentinas, Enciclopedia Argentina de Agricultura y Jardinería (2da ed.), Tomo II, Fase 1 ACME, Buenos Aires. Pp. 85.

Canfield, M. H. 1941. Application of the line interception method in sampling of range vegetation. J Arid Environ 39:388-394.

Chander, G., B. L. Markham, and D. L. Helder. 2009. Summary of current radiometric calibration for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113:893–903, doi: 10.1016/j.rse.2009.01.007.

Daget, P., and J. Poissonet. 1971. Une méthoded´analyzephytologique des praieries; criteresd´application. Annales Aggonomiques 22(1):5-41.

Del Valle, H. f. 1998. Patagonian soils:a regional synthesis. Ecología Austral 8:103-123

Elissalde, N., J. M. Escobar, and V. B. Nakamatsu. 2002. Inventario y evaluación de pastizales naturales de la zona árida y semiárida de la Patagonia. Programa de Acción de Lucha contra la Desertificación. Convenio SDSyPA-INTA-GTZ. Trelew.

FAO. 1984. Metodología provisional para la evaluación y la representación cartográfica de la desertización. FAO-PNUMA, Roma. Pp. 74.

Gaitán, J. J., D. Bran, G. Oliva, G. Ciari, V. Nakamatsu, J. Salomone, et al. 2013. Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes. Ecol Indic 34:181-191, doi: 10.1016/j.ecolind.2013.05.007.

García-Gómez, M., and F. T. Maestre. 2011. Remote sensing data predict indicators of soil functioning in semi-arid steppes, central Spain. Ecol Indic 11:1476-1481, doi: 10.1016/j.ecolind.2011.02.015.

Gitelson, A., Y. J. Kaufman, and M. N. Merzlyak. 1996. Use of a green channel in remote sensing of global vegetation from EOS–MODIS. Remote Sens Environ 58(3):289-298, doi:10.1016/S0034-4257(96)00072-7.

Golluscio, R. A., V. Deregibus, and J. M. Paruelo. 1998. Sustainability and range management in the Patagonian steppe. Ecología Austral 8:265-284.

Greig-Smith, P. 1983. Quantitative plant ecology. 3rd ed. Blackwell.

Hofmann, F., M. Köpen, F. Klawonn, and R. Roy. 2006. Unsupervised Pixel Clustering in Multispectral Images by Genetic Programming II. Pp. 37-52 in: Springer Science and Business Media Editor (ed.). Soft computing: Methodologies and applications. Vol. 32.

Huete, A., K. Didan, T. Miura, and E. Rodríguez. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices (Special Issue). Remote Sens Environ 83:195-213, doi: 10.1016/S0034-4257(02)00096-2.

Huete, A. R., and R. D. Jackson. 1987. Suitability of spectral indices for evaluating vegetation characteristics on arid environments. Remote Sens Environ 23:213-232, doi: 10.1016/0034-4257(87)90038-1.

Huete, A. R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:295-309, doi:10.1016/0034-4257(88)90106-X.

Huete, A. R., G. Hua, J. Qu, A. Chebouni, and W. J. Van Leeuwen. 1992. Normalization of multidirectional red and NIR reflectances with the SAVI, Remote Sens Environ 40:1-20, doi: 10.1016/0034-4257(92)90074-T.

Irisarri, J. G. N., M. Oesterheld, J. M. Paruelo, and M. Texeira. 2012. Patterns and controls of aboveground net primary production in meadows of Patagonia. A remote sensing approach. J Veg Sci 23(1):114-126, doi: 10.1111/j.1654-1103.2011.01326.x.

Ji, L., L. Zhang, J. Rover, B. K. Wylie, and X. Chene. 2014. Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices. ISPRS J Photogra Remote Sens 96:20-27, doi: 10.1016/j.isprsjprs.2014.06.013.

Jiang, Z., A. R. Huete, K. Didan, and T. Miura. 2008. Development of a two-band enhanced vegetation index without a blue band. Remote Sens Environ 112(10):3833-3845, doi: 10.1016/j.rse.2008.06.006.

Jordan, C. F. 1969. Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50(4):663-666, doi: 10.2307/1936256.

León, R. J. C., D. Bran, M. Collantes, J. M. Paruelo, and A. Soriano. 1998. Grandes unidades de vegetación de la Patagonia extra andina. Ecología Austral 8:125-144.

Ong, C., D. Tongway, M. Kacctta, and N. Hindly. 2009. Phase 1: Deriving Ecosystem function analysiz indices from airborne hyperexpectral data. CSIRO Exploration and Mining.

Paruelo, J. M., and M. Aguiar. 2003. El impacto humano sobre los ecosistemas: el caso de la desertificación. Ciencia Hoy 13:48-59.

Paruelo, J. M., R. A. Golluscio, J. P. Guerschman, A. Cesa, V. V. Jouve, and M. F. Garbulsky. 2004. Regional scale relationships between ecosystem structure and functioning: the case of the Patagonian steppes. Global Ecol Biogeogr 13:385-395, doi: 10.1111/j.1466-822X.2004.00118.x.

Passera, C. B., and O. Borsetto. 1983. Determinación del índice de calidad específico. Actas del Taller de Arbustos Forrajeros. Grupo regional FAO-IADIZA. Mendoza.

Passera, C. B., A. D. Dalmaso, and O. Borseto. 1986. Método de “Point Quadrat” modificado. Actas del Taller de Arbustos Forrajeros. Grupo regional FAO-IADIZA. Mendoza.

Qi, J., A. Chehbouni, A. R. Huete, Y. H. Kerr, and S. Sorooshian. 1994. A modified soil adjusted vegetation index. Remote Sens Environ 48(2):119-126, doi: 10.1016/0034-4257(94)90134-1.

Reynolds, J. F., D. M. Stafford Smith, E. F. Lambin, I. I. Turner, M. Mortimore, S. P. J. Batterbury, et al. 2007. Global desertification building a science for dryland development. Science 316:847-851.

Riazanoff, S. 2002. SPOT satellite geometry handbook. S-NT-73-12-SI.Edition 1 Revision 0. GAEL Consultant. Toulouse, France.

Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering. 1973. Monitoring vegetation systems in the great plains with ERTS. In: Third ERTS Symposium, NASA SP-351 I. Pp. 309-317.

Rueter, B. L., and M. A. Bertolami. 2010. Comunidades vegetales y factores ambientales en los cañadones costeros de Patagonia. Ecología Austral 20:17-25.

Rueter, B. L. 2013. Tesis doctoral, Aspectos estructurales y funcionales de las comunidades vegetales nativas de los Cañadones Costeros del Distrito del Golfo San Jorge. Su dinámica temporal. Universidad Nacional de la Patagonia San Juan Bosco. Comodoro Rivadavia, Argentina.

Running, S. W., P. E. Thornton, R. R. Nemani, and J. M. Glassy. 2000. Global terrestrial gross and net primary productivity from the Earth Observing System. Pp. 44-57 in: O. E. Sala, R. B. Jackson, H. A. Mooney and R. W. Howarth (eds.). Methods in ecosystem science,. Springer-Verlag, New York, USA.

Sims, N. C., and M. J. Colloff. 2012. Remote sensing of vegetation responses to flooding of a semi-arid floodplain: Implications for monitoring ecological effects of environmental flows. Ecol Indic 18:387-391, doi: 10.1016/j.ecolind.2011.12.007.

Soriano, A., and J. M. Paruelo. 1990. El manejo de campos de pastoreo en Patagonia: Aplicación de principios ecológicos. Ciencia Hoy 2(7):44-53.

Soriano, A., and C. Movia. 1986. Erosión y desertización en la Patagonia. Interciencia 11:77-83.

Soriano, A. 1956. Los distritos florísticos de la provincia Patagónica. Rev Invest Agric 10:323-347.

Tucker, C. J. 1979. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens Environ 8:127-150, doi: 10.1016/0034-4257(79)90013-0.

Múltiples índices espectrales para predecir la variabilidad de  atributos estructurales y funcionales en zonas áridas

Published

2017-02-24

How to Cite

Buzzi, M. A., Rueter, B. L., & Ghermandi, L. (2017). Multiple spectral indices to predict the variability of structural and functional attributes in arid areas. Ecología Austral, 27(1), 055–062. https://doi.org/10.25260/EA.17.27.1.0.315