Legacy patterns in the abundance of epigaeic mountain beetles after the eruption of the Puyehue-Cordón Caulle volcanic complex (NW Patagonia, Argentina)

Authors

  • Adriana Ruggiero Facultad de Agronomía. Universidad de Buenos Aires
  • Victoria Werenkraut

DOI:

https://doi.org/10.25260/EA.14.24.1.0.35

Abstract

Ecología Austral, 24:31-41 (2014)

Organisms that survive a volcanic eruption are part of the biological legacies that are fundamental to subsequent succession and ecosystem development. In January 2012, the summer immediately after the eruption of the Puyehue-Cordón Caulle volcanic complex, we evaluated the short-term response of epigaeic beetle abundance to ash deposition. We focused on three mountains (La Mona, Bayo, Challhuaco) in northwestern Patagonia (Argentina) that were differentially affected by ash deposition. We re-established 32, 100 m2 sampling plots of nine pitfall traps, every 100 m of altitude from the base to the summit of each peak, which we had previously sampled in January 2005 and 2006. We compared the shape of pre- and post- eruptive abundance-elevation relationship (AER), and assessed whether the relative importance of environmental predictors of AER (ambient energy, vegetation cover, plant species richness and soil attributes) changed after the eruption. La Mona and Bayo were most affected by ash deposition; Challhuaco was considerable less affected. Yearly fluctuations in abundance levels were significant in Bayo; here, the shape of AER changed significantly after the eruption. In La Mona, abundance was similar among sampled years, and the shape of AER departed weakly from the overall trend after the eruption. In Challhuaco, abundance tended to increase weakly with time, and the shape of AER did not change after the eruption. Gravel percentage and tree canopy cover were the two most important predictors of pre-eruptive AER, but only tree canopy cover remained as important after the eruption. We conclude that short-term effects of ash deposition on epigaeic mountain beetles were subtle and suggest that the presence of a gradient of ash deposition may lead to associated patterns in biological legacies. Long-term monitoring is essential to fully understand the structural and functional recovery of these mountain ecosystems.

 

References

BAARS, MA. 1979. Catches in pitfall traps in relation to mean densities of carabid beetles. Oecologia, 41(1):25-46.

BARROS, V; V CORDÓN; J FORQUERA; C MOYANO; R MÉNDEZ; ET AL. 1983 Cartas de precipitación de la zona oeste de las provincias de Río Negro y Neuquén. Primera contribución Facultad de Ciencias Agrarias, Cinco Saltos, Neuquén.

BLACK, RA & RN MACK. 1986. Mount St. Helens Ash: Recreating its effects on the steppe environment and ecophysiology. Ecology, 67:1289-1302.

BLAKEMORE, LC; PL SEARLE & BK DALY. 1987a. Soil pH (Part 2). Pp. 9-12 in: NZ Soil Bureau (ed.). Methods for Chemical Analysis of Soils Scientific Report Nr. 80. NZ Soil Bureau, Department of Scientific and Industrial Research, Lower Hunt, New Zealand.

BLAKEMORE, LC; PL SEARLE & BK DALY. 1987b. Soluble Salts (Part 9). Pp. 77-82 in: NZ Soil Bureau (ed.). Methods for Chemical Analysis of Soils Scientific Report Nr. 80. NZ Soil Bureau, Department of Scientific and Industrial Research, Lower Hunt, New Zealand.

BURNHAM, KP & DR ANDERSON. 2002. Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach, Second edn. Springer-Verlag, New York, USA.

BUTELER, M; T STADLER; GP LÓPEZ GARCÍA;MS LASSA; D TROMBOTTO LIAUDAT; ET AL. 2011. Propiedades insecticidas de la ceniza del complejo volcánico Puyehue-Cordón Caulle y su posible impacto ambiental. Rev. Soc. Entomol. Argent., 70:149-156.

CALCAGNO, V & C DE MAZANCOURT. 2010. glmulti: An R Package for Easy Automated Model Selection with (Generalized) Linear Models. Journal of Statistical Software, 34:1-29. See http://www.jstatsoft.org/v34/i12.

CHELI, G & JC CORLEY. 2010. Efficient sampling of ground-dwelling arthropods using pitfall traps in arid steppes. Neotrop. Entomol., 39:912-917.

CLAPPERTON, C. 1993. Quaternary geology and geomorphology of South America. Elsevier.

DALE, VH; CM CRISSAFULLI & FJ SWANSON. 2005. 25 years of ecological change at Mount St. Helens. Science, 308:961-962.

ELLIS, JI & DC SCHNEIDER. 1997. Evaluation of a gradient sampling desing for environmental impact assessment. Environ. Monit. Assess., 48:157-172.

EVANS, AV & CHL BELLAMY. 2000. An inordinate fondness for beetles. University of California Press.

EZCURRA, C & C BRION. 2005. Plantas del Nahuel Huapi: Catálogo de la Flora Vascular del Parque Nacional Nahuel Huapi, Argentina Universidad Nacional del Comahue. Red Latinoamericana de Botánica, San Carlos de Bariloche, Argentina.

FERNÁNDEZ-ARHEX, V; M BUTELER; ME AMADIO; A ENRIQUEZ; AL PIETRANTUONO; ET AL. 2013. The effects of volcanic ash from Puyehue-Cualle range eruption on the survival of Dichroplus vittigerum (Orthoptera: Acrididae). Fl. Entom., 96:286- 288.

FERREYRA, M, A CINGOLANI; C EZCURRA & D BRAN. 1998. High-Andean vegetation and environmental gradients in northwestern Patagonia, Argentina. J. Veg. Sci., 9:307-316.

FOSTER, DR; DH KNIGHT & JF FRANKLIN. 1998. Landscape patterns and legacies resulting from large, infrequent forest disturbances. Ecosystems, 1:497-510.

FRANKLIN, JF. 1990. Biological Legacies: A critical management concept from Mount St. Helens. Transactions North American Trans. Wildl. & Nat. Res. Conf., 55:216-219.

FRANKLIN, JF; D LINDENMAYER; JA MACMAHON; A MCKEE; JJ MAGNUSON; ET AL. 2000. Threads of Continuity. Conservation Biology in Practice, 1(1):9-16.

GAITÁN, JJ; JA AYESA; F UMAÑA; F RAFFO & DB BRAN. 2011. Cartografía del área afectada por cenizas volcánicas en las provincias de Río Negro y Neuquén. Documentos INTA EEA Bariloche. http://inta.gob.ar/documentos/cartografia-del-area-afectada-por-cenizas-volcanicas-en-las-provincias-de-rio-negro-y-neuquen.

HULBERT, SH. 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr., 54:187-211.

JOBBÁGY, EG; JM PARUELO & RJC LEÓN. 1995. Estimación del regimen de precipitación a partir de la distancia a la cordillera el noroeste de la Patagonia. Ecol. Austral, 5:47-53.

KITZBERGER, T. 2013. Impact of Extreme and Infrequent Events on Terrestrial Ecosystems and Biodiversity. Pp. 209-223 in: Levin, SA (ed.). Encyclopedia of Biodiversity, second edition, Volume 4, Waltham, MA: Academic Press.

KLUTE, A. 1986. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. American Society of Agronomy-Soil Science Society of America.

MARTÍNEZ, AS; M MASCIOCCHI; JM VILLACIDE; G HUERTA; L DANERI; ET AL. 2013. Ashes in the air: the effects of volcanic ash emissions on plant–pollinator relationships and possible consequences for apiculture. Apidologie, 44:268-277.

MARSKE, KA; MA IVIE & GM HILTON. 2007. Effects of Volcanic Ash on the Forest Canopy Insects of Montserrat, West Indies. Environ. Entomol., 36:817-825.

MASCIOCCHI, M; AJ PEREIRA; MV LANTSCHNER & JC CORLEY. 2013. Of volcanoes and insects: the impact of the Puyehue - Cordón Caulle ash fall on populations of invasive social wasps, Vespula spp. Ecol. Res., 28:199-205.

DEL MORAL, R. 1981. Life returns to Mount St. Helens. Nat. Hist., 90:36-49.

NIEMELÄ, J; Y HAILA & P PUNTTILA. 1996. The importance of small-scale heterogeneity in boreal forests: Variation in diversity in forest-floorinvertebrates across the succession gradient. Ecography, 19:352-368.

PARUELO, JM; A BELTRÁN; E JOBBÁGY; OE SALA & RA GOLLUSCIO. 1998. The climate of Patagonia: general patterns and controls on biotic processes. Ecol. Austral, 8:85-101.

R DEVELOPMENT CORE TEAM. 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

RUDLOFF, W. 1981. World-Climates with tables of climatic data and practical suggestions. Wissenschaftliche Verlagsgesellschaft mbH Stuttgart.

SIMKIN, T. 1993. Terrestrial volcanism in space and time. Annu. Rev. Earth Planet. Sci., 21:427-452.

TALBOT, SS; S LOOMAN-TALBOT & LR WALKER. 2010. Post-eruption Legacy Effects and Their Implications for Long-Term Recovery of the Vegetation on Kasatochi Island, Alaska. Arct. Antarct. Alp. Res., 42:285-296.

THOMAS, GW. 1996. Soil pH and Soil Acidity. Pp. 475-490 In: Bigham, JM (ed.). Methods of Soil Analysis. Part 3. Chemical Methods. SSSA Book Series Nr. 5. Soil Science Society of America, Madison, Wisconsin, USA.

TOPP, W. 1994. Seasonal time partitioning and polymorphism in the developmental cycles of sympatric Staphylinoidea (Coleoptera) living in an unstable environment. Pp 277-312 in: Danks, HV (ed.). Insect life-cycle polymorphism: theory, evolution, and ecological consequences for seasonality and diapause control. Kluwer Academic Publishers.

TURNER M; V DALE & EH EVERHAM. 1997. Fires, hurricanes, and volcanoes: Comparing large disturbances. Bioscience, 47:758-768.

UNDERWOOD, AJ. 1992. Beyond BACI: the detection of environmental impacts on populations in the real, but variable, world. J. Exp. Mar. Biol. Ecol., 161:145-178.

VILLAROSA, G, V OUTES; A HAJDUK; E CRIVELLI MONTERO; D SELLES; ET AL. 2006. Explosive volcanism during the Holocene in the Upper Limay River Basin: the effects of ashfalls on human societies, Northern Patagonia, Argentina. Quatern. Int., 158:44-57.

WERENKRAUT, V. 2010. Patrones altitudinales en la diversidad de coleópteros y hormigas epígeos del noroeste de la Patagonia argentina. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. http://digital.bl.fcen.uba.ar/gsdl-282/cgi-bin/library.cgi?a=d&c=tesis&d=Tesis_4785_Werenkraut.

WERENKRAUT, V & A RUGGIERO. 2013. The richness and abundance of epigaeic mountain beetles in NW Patagonia, Argentina: assessment of patterns and environmental correlates. J. Biogeogr., doi:10.1111/jbi.12210

ZUUR, AF; EN IENO; NJ WALKER; AA SAVELIEV & GM SMITH. 2009. Mixed effects models and extensions in ecology with R. Statistics for Biology and Health Series. Springer Science.

Downloads

Published

2014-04-01

How to Cite

Ruggiero, A., & Werenkraut, V. (2014). Legacy patterns in the abundance of epigaeic mountain beetles after the eruption of the Puyehue-Cordón Caulle volcanic complex (NW Patagonia, Argentina). Ecología Austral, 24(1), 31–41. https://doi.org/10.25260/EA.14.24.1.0.35