Cambios tamaño-dependientes en la dieta de peces marinos y su estudio mediante análisis de isótopos estables

Authors

  • Manuela Funes Facultad de Agronomía. Universidad de Buenos Aires
  • Ana Laura Liberoff
  • David E. Galván

DOI:

https://doi.org/10.25260/EA.14.24.1.0.44

Abstract

Ecología Austral, 24:118-126 (2014)

Fish undergo significant morphological changes throughout their lives, like in the relative length of the digestive tube or the increase of mouth gape, and some of them can lead to changes in the trophic level. Studying these changes is important to understand fish trophodynamics, to verify the assumptions of size-structured trophic models and to assess community status by analyzing the size spectrum. In the present study we evaluated changes in the trophic positions of four reef-fish from northern Patagonia: Pagrus pagrusDiplodus argenteus argenteusPinguipes brasilianus and Acanthistius patachonicus. Even though these four species share foraging areas and had similar trophic levels (trophic level ranged between 3.98 and 4.45), they exhibited specie-specific isotopic trends related to changes in body size that could be meaning different trophic behavior. While P. pagrus and Apatachonicus presented an increase in their trophic level positively correlated with body size, D. argenteus and P. brasilianus did not show any isotopic trend along ontogeny. These results highlight the importance of including the species identity in size-structured trophic models, as well as to acknowledge that size-based feeding behavior might not be ubiquitous. However, these results support the assumption that as the maximum body size of a species increases, there are more probabilities to increase trophic level with size.

References

ALBOUY, C; F GUILHAUMON; S VILLÉGER; M MOUCHET; L MERCIER; JM CULIOLI; JA TOMASINI; LE LOC'H F & D MOUILLOT. 2011. Predicting trophic guild and diet overlap from functional traits: Statistics, opportunities and limitations for marine ecology. Mar. Ecol. Prog. Ser., 436: 7-28.

BACHILLER, E & X IRIGOIEN. 2013. Allometric relations and consequences for feeding in small pelagic fish in the Bay of Biscay. ICES J Mar. Sci., 70:232-243.

BLYTH-SKYRME, RE; MJ KAISER; JG HIDDINK; G EDWARDS-JONES & PJB HART. 2006. Conservation benefits of temperate marine protected areas: Variation among fish species. Conserv. Biol., 20:811-820.

BOECKLEN, W; C YARNES; B COOK & A JAMES. 2011. On the Use of Stable Isotopes in Trophic Ecology. Annu. Rev. Ecol. Syst., 42:411-440

BRANKEVICH, A; A ROUX & R BASTIDA. 1990. Relevamiento de un banco de besugo (Spagrus pagrus) en la plataforma bonaerense. características fisiográficas generales y aspectos ecológicos preliminares. Frente Marítimo, 7:75-86.

CARABEL, S; E GODÍNEZ-DOMÍNGUEZ; P VERÍSIMO; L FERNÁNDEZ & J FREIRE. 2006 An assessment of sample processing methods for stable isotope analyses of marine food webs. J. Exp. Mar. Biol. Ecol., 336:254-261.

COHEN, JE; SL PIMM; P YODZIS & J SALDANA. 1993. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol., 62:67-78.

COUSSEAU, MB & R PERROTA. 2000. Peces marinos de Argentina. Biología, Distribución y Pesca. Instituto de Investigación y Desarrollo Pesquero. Mar del Plata, Argentina.

CRAWLEY, M.J. 2007. The R Book. J. Willey.

DAVENPORT, S & NJ BAX. 2002. A trophic study of a marine ecosystem of southeastern Australia using stable isotopes of carbon and nitrogen. Can. J. Fish. Aquat. Sci., 59:514-530.

DAVID, GS; R COUTINHO; I QUAGIO-GRASSIOTTO & JR VERANI. 2005. The reproductive biology of Diplodus argenteus (Sparidae) in the coastal upwelling system of Cabo Frio, Rio de Janeiro, Brazil. Afr. J. Mar. Sci., 27:439-447.

DENIRO, M J & S EPSTEIN. 1978. Influence of diet on the distribution of stable carbon isotopes in animals. Geochim. Cosmochim., 42:495–506.

DEUDERO S; J PINNEGAR; NVC POLUNIN; G MOREY; B MORALES NIN. 2004. Spatial variation and ontogenic shifts in the isotopic composition of Mediterranean littoral fishes. Mar. Biol., 145:971-981.

FRANCE, RL. 1995. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar. Ecol. Prog. Ser., 124:307-312.

FRY, B. 2006. Stable isotope Ecology. Springer Science+Business Media.

FROESE, R & D PAULY. 2013. FishBase. World Wide Web electronic publication. www.fishbase.org

GALVÁN, D; L VENERUS; A IRIGOYEN; AM PARMA & A GOSZTONYI. 2005. Extension of the distributional range of the silver porgy, Diplodus argenteus (Valenciennes 1830), and the red porgy, Pagrus pagrus (Linnaeus 1758) (Sparidae) in northern Patagonia, south-western Atlantic. J. Appl. Ichthyol., 21:444-447.

GALVÁN, DE; CJ SWEETING & WDK REID. 2010. Power of stable isotope techniques to detect size-based feeding in marine fishes. Mar. Ecol. Prog. Ser., 407:271-278.

GALVÁN, DE; LA VENERUS & AJ IRIGOYEN. 2009. The Reef-fish Fauna of the Northern Patagonian Gulfs, Argentina, Southwestern Atlantic. TOFishSJ., 2:25-31.

GOLDSTEIN, HE & MB COUSSEAU. 1987. Estudios sobre el régimen alimentario del mero (Acanthistius brasilianus) y su relación con la características morfométricas del sistema digestivo (Pisces, Fam. Serranidae). Rev. Inv. Des. Pesq., 7:85-104.

GREENWOOD, NDW; CJ SWEETING & NVC POLUNIN. 2010. Elucidating the trophodynamics of four coral reef fishes of the Solomon Islands using 15N and 13C. Coral Reefs, 29:785-792.

GUNDERSON, D; AM PARMA; R HILBORN; J COPE; D FLUHARTY; ET AL. 2008. The Challenge of Managing Nearshore Rocky Reef Resources. Fisheries, 33:172-180.

HUNTSMAN, G. 1996. Pagrus pagrus. In: IUCN 2012. IUCN Red List Of Threatened Species. Versión 2012.1. www.iucnredlist.org.

IRIGOYEN, AJ & DE GALVÁN. 2010. Peces de Arrecifes Argentinos. Proyecto Arrecife - CENPAT. Puerto Madryn, Argentina.

JACKSON, AL; R INGER; A PARNELL & S BEARHOP. 2011. Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. J Anim., Ecol. 80:595-602.

JENNINGS, S; J OLIVEIRA & KJ WARR. 2007. Measurement of body size and abundance in tests of macroecological and food web theory. J. Anim. Ecol., 76:72-82.

JENNINGS, S; JK PINNEGAR; NVC POLUNIN & TW BOON. 2001. Weak cross-species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities. J. Anim. Ecol., 70:934-944.

JENNINGS, S; JK PINNEGAR; NVC POLUNIN & KJ WARR. 2002. Linking size-based and trophic analyses of benthic community structure. Mar. Ecol. Prog. Ser., 226:77-85.

JIAO, Y; Y CHEN; D SCHNEIDER & J WROBLEWSKI. 2004. A simulation study of impacts of error structure on modeling stock-recruitment data using generalized linear models. Can J. Fish. Aquat. Sci., 61:122-133.

KARPOUZI, VS & KI STERGIOU. 2003. The relationships between mouth size and shape and body length for 18 species of marine fishes and their trophic implications. J. Fish. Biol., 62: 1353-1365.

LOGAN, JM; TD JARDINE; TJ MILLER; SE BUNN; RA CUNJAK & ME LUTCAVAGE. 2008. Lipid corrections in carbon and nitrogen stable isotope analyses: Comparison of chemical extraction and modelling methods. J. Anim. Ecol., 77:838-846.

PINNEGAR, J & NVC POLUNIN. 1999. Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Funct. Ecol., 13:225-231.

POLIS, GA & DR STRONG. 1996. Food Web Complexity and Community Dynamics

Amer. Nat., 147:813-846.

POST, D. 2002. Using Stable Isotopes to Estimate Trophic Position: Models, Methods, and Assumptions. Ecology, 83:703-718.

POST, D; M PACE & N HAIRSTON JR. 2000. Ecosystem size determines food-chain length in lakes. Nature, 405:1047-1049.

R DEVELOPMENT CORE TEAM. 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing

REID, WDK; S CLARKE; MA COLLINS & M BELCHIER. 2007. Distribution and ecology of Chaenocephalus aceratus (Channichthyidae) around south Georgia and Shag Rocks (Southern Ocean). Polar Biol., 30:1523-1533.

STAL, J; L PIHL & H WENNHAGE. 2007. Food utilization by coastal fish assemblages in rocky and soft bottoms on the Swedish west coast: Inference for identification of essential fish habitats. Est. Coast. Shelf Sci., 71:593-607.

SCHARF, FS; JUANES F & RA ROUNTREE. 2000. Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Mar. Ecol. Prog. Ser., 208:229-248.

SIBBING, FA & LAJ NAGELKERKE . 2000. Resource partitioning by Lake Tana barbs predicted from fish morphometrics and prey characteristics. Rev. Fish Biol. Fish., 10:393-437.

STERGIOU KI & VS KARPOUZI. 2002. Feeding habits and trophic levels of Mediterranean fish. Rev. Fish Biol. Fish., 11:217-254.

SWEETING, CJ; JP BARRY; C BARNES; NVC POLUNIN & S JENNINGS. 2007a. Effects of body size and environment on diet-tissue δ15N fractionation in fishes. J. Exp. Mar. Biol. Ecol., 340:1-10.

SWEETING, CJ; JP BARRY; NVC POLUNIN & S JENNINGS. 2007b. Effects of body size and environment on diet-tissue δ13C fractionation in fishes. J. Exp. Mar. Biol. Ecol., 352:165-176.

SWEETING, CJ; NVC POLUNIN & S JENNINGS. 2006. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid. Commun. Mass. Spectrom., 20: 595-601.

SWEETING, CJ; WDK REID & DE GALVÁN. 2012. Exploring the ubiquity and form of size based feeding in marine fishes. Pp. 163 In: Book of Abstracts 6th Word Fisheries Congress.

Published

2014-04-01

How to Cite

Funes, M., Liberoff, A. L., & Galván, D. E. (2014). Cambios tamaño-dependientes en la dieta de peces marinos y su estudio mediante análisis de isótopos estables. Ecología Austral, 24(1), 118–126. https://doi.org/10.25260/EA.14.24.1.0.44