La degradación de los bosques de altura del centro de Argentina reduce su capacidad de almacenamiento de agua

Autores/as

  • María Poca Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina. Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.
  • Ana M. Cingolani Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina. Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.
  • Diego E. Gurvich Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina. Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.
  • Juan I. Whitworth-Hulse Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina.
  • Valentina Saur Palmieri Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.

DOI:

https://doi.org/10.25260/EA.18.28.1.1.497

Resumen

La capacidad del suelo de almacenar y regular el flujo de agua depende en gran medida de su su tasa de infiltración y profundidad. Los disturbios como el pastoreo y el fuego son moduladores fuertes del sistema vegetación-suelo, ya que son capaces de alterar la tasa de infiltración y la profundidad del suelo. En sistemas montanos estacionales, esto repercute sobre la capacidad de liberar lentamente el agua almacenada hacia el caudal de los arroyos. Nos propusimos indagar si las variaciones en la estructura de la vegetación, debidas en su mayoría al pastoreo y al fuego, de los bosques de altura de Polylepis australis Bitter de las sierras de Córdoba se asocian a variaciones en las propiedades del suelo en general y, en particular, a aquellas que regulan la capacidad de almacenar agua. Para abarcar la variabilidad completa de estructura de la vegetación seleccionamos 28 sitios distribuidos en tres establecimientos con distintos manejos, y restringimos las variaciones topográficas. No detectamos asociaciones entre la estructura de la vegetación y la topografía; es decir, en general, logramos restringir el efecto topográfico. Por otro lado, aquellos sitios con vegetación más estructurada presentaron suelos con menor densidad aparente y mayor contenido de materia orgánica y capacidad de campo. En relación a la capacidad de almacenamiento de agua, los suelos más profundos y con mayor tasa de infiltración fueron los menos densos, con mayor contenido de materia orgánica y mayor capacidad de campo, asociados a una vegetación más estructurada. Es decir, mientras más conservado se encuentra el sistema vegetación-suelo de los bosques de P. australis, mayor cantidad de agua puede ingresar al suelo y ser almacenada. En consecuencia, las alteraciones del sistema vegetación-suelo, dadas principalmente por el pastoreo y el fuego, reducen la capacidad de almacenar agua de los bosques de altura del centro de la Argentina.

DOI: https://doi.org/10.25260/EA.18.28.1.1.497

Citas

Abdel-Magid, A. H., G. E. Schuman, and R. H. Hart. 1987. Soil bulk density and water infiltration as affected by grazing systems. J Range Manage 40:307-309.

Altesor, A., G. Piñeiro, F. Lezama, R. B. Jackson, M. Sarasola and J. M. Paruelo 2006. Ecosystem changes associated with grazing in subhumid South American grasslands. J Veg Sci 17(3):323-332.

APN (Administración de Parques Nacionales). 2007. Plan de Manejo del Parque Nacional Quebrada del Condorito. Reserva Hídrica Provincial de Achala. Editorial APN, Ciudad Autónoma de Buenos Aires, Argentina.

Aronson J., D. Renison, J. O. Rangel-Ch., S. Levy-Tacher, C. Ovalle, and A. Del Pozo. 2007. Restauración del Capital Natural: sin reservas no hay bienes ni servicios. Revista Ecosistemas, 16(3):1-10.

Belsky, A. J., and D. M. Blumenthal. 1997. Effects of Livestock Grazing on Stand Dynamics and Soils in Upland Forests of the Interior West. Conserv Biol 11(2):315-327.

Bernardi, R. E., M. Holmgren, M. Arim, and M. Scheffer. 2016. Why are forests so scarce in subtropical South America? The shaping roles of climate, fire and livestock. Forest Ecol Manag 363:212-217.

Beven, K., and P. Germann. 2013. Macropores and water flow in soils revisited. Water Resource Res 49(6):3071-3092.

Bonell, M., B. K. Purandara, B. Venkatesh, J. Krishnaswamy, H. A. K. Acharya, U. V. Singh, R. Jayakumar, and N. Chappell. 2010. The impact of forest use and reforestation on soil hydraulic conductivity in the Western Ghats of India: implications for surface and sub-surface hydrology. J Hydrol 391(1):47-62.

Boone Kauffman, J., A. S. Thorpe, and E. J. Brookshire. 2004. Livestock Exclusion and Belowground Ecosystem Responses in Riparian Meadows of Eastern Oregon. Ecol Appl 14(6):1671-1679.

Bouwer, H. 1986. Intake rate: cylinder infiltrometer. En: Klute, A. (Ed.). Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods. 2nd Ed. Madison: American Society of Agronomy and Soil Science Society of America. Pp. 825-844.

Bremner, J. M. 1996. Nitrogen - Total. Pp. 961-1010 en D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston and M. E. Sumner (eds.). Methods of Soil Analysis. Part 3 – Chemical Methods. Madison, Wisconsin, USA.

Bruijnzeel, L. A. 1988. (De)Forestation and dry season flow in the tropics: a closer look. J Trop Forest Sci 1(3):229-243.

Bruijnzeel, L. A. 2004. Hydrological functions of tropical forests: not seeing the soil for the trees? Agr Ecosyst Environ 104(1):185-228.

Cabido, M., R. Breimer, and G. Vega. 1987. Plant communities and associated soil types in a high plateau of the Córdoba mountains, central Argentina. Mt Res Dev 7:25-42.

Canadell, J., R. B. Jackson, J. B. Ehleringer, H. A. Mooney, O. E. Sala, and E. D. Schulze. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108(4):583-595.

Cingolani, A. M., M. R. Cabido, D. Renison, and V. Solís Neffa. 2003. Combined effects of environment and grazing on vegetation structure in Argentine granite grasslands. J Veg Sci 14(2):223-232.

Cingolani, A. M., D. Renison, M. R. Zak, and M. R. Cabido. 2004. Mapping vegetation in a heterogeneous mountain rangeland using Landsat data: an alternative method to define and classify land-cover units. Remote Sens Environ 92(1):84-97.

Cingolani, A. M., D. Renison, P. A. Tecco, D. E. Gurvich, and M. Cabido. 2008. Predicting cover types in a mountain range with long evolutionary grazing history: a GIS approach. J Biogeogr 35(3):538-551.

Cingolani, A. M., M. V. Vaieretti, M. A. Giorgis, N. La Torre, J. I. Whitworth-Hulse, and D. Renison. 2013. Can livestock and fires convert the sub-tropical mountain rangelands of central Argentina into a rocky desert? Rangeland J 35(3):285-297.

Cingolani, A. M., M. V. Vaieretti, M. A. Giorgis, M. Poca, P. A. Tecco, and D. E. Gurvich. 2014. Can livestock grazing maintain landscape diversity and stability in an ecosystem that evolved with wild herbivores? Perspect Plant Ecol Evol Syst 16(4):143-153.

Cingolani, A. M., M. Poca, M. A. Giorgis, M. V. Vaieretti, D. E. Gurvich, J. I. Whitworth-Hulse, and D. Renison. 2015. Water provisioning services in a seasonally dry subtropical mountain: Identifying priority landscapes for conservation. J Hydrol 525:178-187.

Colladon, L. 2004. Temperaturas medias mensuales. Cuenca del río San Antonio, Sistema del Río Suquía, Provincia de Córdoba. Instituto Nacional del Agua y del Ambiente (INA) y Centro de Investigaciones de la Región Semiárida (CIRSA). Córdoba, Argentina.

Colladon, L. 2014. Anuario pluviométrico 1992–2012. Cuenca del Río San Antonio, Sistema del Río Suquía, Provincia de Córdoba. Córdoba, Argentina. Instituto Nacional del Agua y del Ambiente (INA) y Centro de Investigaciones de la Región Semiárida (CIRSA). Córdoba, Argentina.

Conti, G., L. Enrico, F. Casanoves, and S. Díaz. 2013. Shrub biomass estimation in the semiarid Chaco forest: a contribution to the quantification of an underrated carbon stock. Ann For Sci 70(5):515-524.

Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. González, and M. Tablada. 2013. InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL: www.infostat.com.ar.

Germer, S., C. Neill, A. V. Krusche, and H. Elsenbeer. 2010. Influence of land-use change on near-surface hydrological processes: undisturbed forest to pasture. J Hydrol 380(3):473-480.

Giorgis, M. A., A. M. Cingolani, I. Teich, D. Renison, and I. Hensen. 2010. Do Polylepis australis trees tolerate herbivory? Seasonal patterns of shoot growth and its consumption by livestock. Plant Ecol 207(2):307-319.

Gómez-Plaza, A., M. Martınez-Mena, J. Albaladejo, and V. M. Castillo. 2001. Factors regulating spatial distribution of soil water content in small semiarid catchments. J Hydrol 253(1):211-226.

Kirkham, M. B. 2005. Principles of soil and plant water relations. Academic Press.

McCune, B., and M. J. Mefford. 1999. PC-ORD: multivariate analysis of ecological data. Version 4.01. MjM software design. Gleneden Beach, Oregon, USA

Milchunas, D. G., and W. K. Lauenroth. 1993. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol Monogr 63(4):327-366.

Neary, D. G., G. G. Ice, and C. R. Jackson. 2009. Linkages between forest soils and water quality and quantity. Forest Ecol Manag 258(10):2269-2281.

Nelson, D. W., and L. E. Sommers. 1996. Total Carbon, Organic carbon, and Organic Matter. Pp. 961-1010 en D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston and M. E. Sumner (eds.). Methods of Soil Analysis. Part 3 – Chemical Methods. Madison, Wisconsin, USA.

Noy-Meir, I. 1973. Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25-51.

Pimentel, D., C. Harvey, P. Resosudarmo, and K. Sinclair. 1995. Environmental and economic costs of soil erosion and conservation benefits. Science 267(5201):1117.

Poca, M., M. V. Vaieretti, A. M. Cingolani, and N. Pérez-Harguindeguy. 2015. Scaling-up from species to ecosystems: How close can we get to actual decomposition? Acta Oecol 64:1-9.

Renison, D., I. Hensen, R. Suarez, and A. M. Cingolani. 2006. Cover and growth habit of Polylepis woodlands and shrublands in the mountains of central Argentina: human or environmental influence? J Biogeogr 33(5):876-887.

Renison, D., I. Hensen, R. Suarez, A. M. Cingolani, P. Marcora, and M. A. Giorgis. 2010. Soil conservation in Polylepis mountain forests of Central Argentina: Is livestock reducing our natural capital? Austral Ecol 35(4):435-443.

Renison, D., M. P. Chartier, M. Menghi, P. Marcora, R. C. Torres, M. Giorgis, I. Hensen, and A. M. Cingolani. 2015. Spatial variation in tree demography associated to domestic herbivores and topography: Insights from a seeding and planting experiment. Forest Ecol Manag 335:139-146.

Roa‐García, M. C., S. Brown, H. Schreier, and L. M. Lavkulich. 2011. The role of land use and soils in regulating water flow in small headwater catchments of the Andes. Water Resour Res 47(5). DOI: 10.1029/2010WR009582

Teich, I., A. M. Cingolani, D. Renison, I. Hensen, and M. A. Giorgis. 2005. Do domestic herbivores retard Polylepis australis Bitt. woodland recovery in the mountains of Córdoba, Argentina? Forest Ecol Manag 219(2):229-241.

Throop, H. L., S. R. Archer, H. C. Monger, and S. Waltman. 2012. When bulk density methods matter: Implications for estimating soil organic carbon pools in rocky soils. J Arid Environ 77:66-71.

Torres, R. C., D. Renison, I. Hensen, R. Suarez, and L. Enrico. 2008. Polylepis australis’ regeneration niche in relation to seed dispersal, site characteristics and livestock density. Forest Ecol Manag 254(2):255-260.

USDA (United States Department of Agriculture). 1999. Soil Quality Test Kit Guide. Agricultural Research Service, Natural Resources Conservation Service, Soil Quality Institute.

Vaieretti, M. V., A. M. Cingolani, N. Pérez-Harguindeguy, D. E. Gurvich, and M. Cabido. 2010. Does decomposition of standard materials differ among grassland patches maintained by livestock? Austral Ecol 35(8):935-943.

von Müller A. R., D. Renison, and A. M. Cingolani. 2017. Cattle landscape selectivity is influenced by ecological and management factors in a heterogeneous mountain rangeland. Rangeland J RJ15114.

Wondzell, S. M., and J. G. King. 2003. Post-fire erosional processes in the Pacific North-west and Rocky Mountain regions. Forest Ecol Manag 178:75-87. DOI:10.1016/S0378-1127(03)00054-9

Yong-Zhong, S., L. Yu-Lin, C. Jian-Yuan, and Z. Wen-Zhi. 2005. Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China. Catena 59(3):267-278.

Zhang, B., Y. S. Yang, and H. Zepp. 2004. Effect of vegetation restoration on soil and water erosion and nutrient losses of a severely eroded clayey Plinthudult in southeastern China. Catena 57(1):77-90.

La degradación de los bosques de altura del centro de Argentina reduce su capacidad de almacenamiento de agua

Publicado

2017-10-26

Cómo citar

Poca, M., Cingolani, A. M., Gurvich, D. E., Whitworth-Hulse, J. I., & Saur Palmieri, V. (2017). La degradación de los bosques de altura del centro de Argentina reduce su capacidad de almacenamiento de agua. Ecología Austral, 28(1-bis), 235–248. https://doi.org/10.25260/EA.18.28.1.1.497