Leaf litter decomposition of the most abundant native and exotic woody species in the piedmont of Yungas forest, Tucumán, Argentina

Authors

  • Romina D. Fernández
  • Roxana Aragón

DOI:

https://doi.org/10.25260/EA.14.24.3.0.5

Abstract

Ecología Austral, 24:286-293 (2014)

Exotic species may influence the process of decomposition, either directly (through differences in the quality and/or quantity of leaf-litter) or indirectly (by altering microclimatic conditions and the abundance and/or activity of decomposers). The aims of our study were: I) to compare the decomposability of the most abundant exotic and native species in secondary forests of the Sierra de San Javier, Tucumán, II) to assess the effect of the environment on the rate of decomposition of an homogeneous substrate and III) to evaluate the effect of the litterbags mesh size on the decomposition process. To do this, we incubated leaf-litter of 7 native and 7 exotic species under standard conditions for one year and also leaf-litter of Populus deltoides (homogeneous substrate) in native and invaded by Ligustrum lucidum secondary forest patches in bags with two mesh sizes. Native and exotic species did not differ in their weight loss rates, but there were interspecific differences. The decay constant of the homogeneous substrate was lower in invaded patches so it is possible that L. lucidum modify the composition and /or activity of decomposing organisms and generate changes in micro-environmental conditions. In addition, decomposition was higher in bags with larger mesh size. This pattern may be explained by the differential access of macro invertebrates. Our results suggest the absence of a pattern of decay in native and exotic species as groups, and the potential influence that L. lucidum would have over the factors controlling littler decomposition.

References

AERTS, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79:439-449.

ARAGÓN, R & M GROOM. 2003. Invasion by Ligustrum lucidum (Oleaceae) in NW Argentina: early stage characteristics in different habitats types. Rev. Biol. Trop., 51:59-70.

ARAGÓN, R; L MONTTI; M AYUP & R FERNANDEZ. 2014. Exotic species as modifiers of ecosystem processes: litter decomposition in native and invaded secondary forests of NW Argentina. Acta Oecologica, 54:21-28.

ASHTON, IW; LA HYATT; KM HOWE; J GUREVITCH & MT LERDAU. 2005. Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest. Ecol. Appl., 15:1263-1272.

AYUP, M; L MONTTI; R ARAGÓN & HR GRAU. 2014. Invasion of Ligustrum lucidum (Oleaceae) in southern Yungas of Argentina: effects in habitat properties and avian communities. Acta Oecologica, 54:72-81.

BARUCH, Z. & G GOLDSTEIN. 1999. Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia, 121:183-192.

CABRERA, AL. 1976. Regiones Fitogeográficas de Argentina. ACME. 135 pp.

CORNELISSEN, JHC. 1996. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J. Ecol., 84:573-582.

CORNELISSEN, JHC; N PÉREZ-HARGUINDEGUY; S DÍAZ; JP GRIME; B MARZANO; ET AL. 1999. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol., 143:191-200.

CORNWELL, WK; JHC CORNELISSEN; K AMATANGELO; E DORREPAAL; V EVINER; ET AL. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Letters, 11:1065-1071.

DAVID, JF & IT HANDA. 2010. The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biol. Rev., 85:881-895.

DI RIENZO, JA; F CASANOVES; MG BALZARINI; L GONZALEZ; M TABLADA; ET AL. 2013. InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar.

DRENOVSKY, RE & KM BATTEN. 2007. Invasion by Aegilops triuncialis (Barb Goatgrass) slows carbon and nutrient cycling in a serpentine grassland. Biol. Inv., 9:107-116.

EASDALE, TA; JR HEALEY; HR GRAU & A MALIZIA. 2007. Tree life histories in a montane subtropical forest: species differ independently by shade-tolerance, turnover rate and substrate preference. J. Ecol., 95:1234-1239.

EHRENFELD, JG. 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 6:503-523.

FUNK, JL & PM VITOUSEK. 2007. Resourse-use efficiency and plant invasión in low-resource systems. Nature, 446:1079-1081.

FUREY, C. 2010. Patrones de descomposición en el Bosque Serrano de Córdoba: el efecto de las especies exóticas a través de los parches monoespecíficos, la calidad foliar y las mezclas de broza. Grade thesis. Escuela de Biología, Facultad de Ciencias Exactas, Físicas y Naturales e Universidad Nacional de Córdoba- Argentina. Pp 48.

FUREY, C; PA TECCO; N PEREZ-HARGUINDEGUY; MA GIORGIS & M GROSSI. 2014. The importance of native and exotic plant identity and dominance on decomposition patterns in mountain woodlands of central Argentina. Acta Oecologica, 54:13-20.

GODOY, O; P CASTRO-DÍEZ; RSP VAN LOGTESTIJN; JHC CORNELISSEN & F VALLADARES. 2010. Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison. Oecologia, 162:781-790.

GRAU, HR & R ARAGÓN. 2000. Arboles invasores de la Sierra de San Javier, Tucumán, Argentina. Pp.5-20. En: Grau HR & R Aragón (eds.), Ecología de árboles exóticos en las Yungas argentinas. LIEY, Universidad Nacional de Tucumán, Tucumán, Argentina.

GURVICH, DE; TA EASDALE &N PÉREZ-HARGUINDEGUY. 2003. Subtropical montane tree litter decomposition: Links withsecondary forest types and species’ shade tolerance. Austral Ecol., 28: 666-673.

GURVICH, DE; PA TECCO & S DÍAZ. 2005. Plant invasions in undisturbed ecosystems: the triggering attribute approach. J.Veg.Sci., 16:723-728.

HARMON, ME & K LAJTHA. 1999. Analysis of Detritus and Organic Horizons for Mineraland Organic Constituents. pp. 143-163. En: Robertson PG; DC Coleman; CS Bledsoe & P Sollins (eds.). Standard soil methods for long-term ecological research. LTER New York. Oxford University Press.

HÄTTENSCHWILER, S & P GASSER. 2005. Soil animals alter plant litter diversity effects on decomposition. Proc. Natl. Acad. Sci. USA, 102:1519-1524.

HOBBIE, SE; PB REICH; J OLEKSYN; M OGDAHL; R ZYTKOWIAK; ET AL. 2006. Tree species effects on decomposition and floor dynamics in a common garden. Ecology, 87:2288-2297.

HUNZINGER, H.1995. La precipitación horizontal: Su importancia para el bosque y a nivel de cuencas en la Sierra San Javier, Tucumán, Argentina. pp. 53-58. En: Brown A & Grau HR (eds.). Investigación, conservación y desarrollo en selvas subtropicales de montaña, LIEY, Tucumán.

KOLAR, CS & DM LODGE. 2001. Progress in invasion biology: predicting invaders. Trends Ecol.Evol., 16:199-204.

KOURTEV, PS; JG EHRENFELD & WZ HUANG. 2002. Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey. Soil Biol. Biochem., 34:1207-1218.

LIAO, C; R PENG; Y LUO; X ZHOU; X WU ET AL. 2008. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol., 177:706-714.

LICHSTEIN, JW; HR GRAU & R ARAGÓN. 2004. Recruitment limitation in secondary forests dominated by an exotic tree. J. Veg. Sci., 15:721-728.

MACK, RN; D SIMBERLOFF; WM LONSDALE; H EVANS; M CLOUT ET AL. 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol.Appl., 10:689-710.

MELILLO, JM; JD ABER; PA STEUDLER & JP SCHIMEL. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63:621-626.

MEENTEMEYER, V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology, 59:465-472.

ORWIN, KH; DA WARDLE & LG GREENFIELD. 2006. Ecological consequences of carbon substrate identity and diversity in a laboratory study. Ecology, 87:580-593.

PEÑUELAS, J; J SARDANS; J LLUSIÀ; SM OWEN; J CARNICER; ET AL. 2010. Faster returns on ‘leaf economics’ and different biogeochemical niche in invasive compared with native plant species. Glob.Change Biol., 16:2171-2185.

PÉREZ HARGUINDEGUY, N; S DÍAZ; JHC CORNELISSEN; F VENDRAMINI; M CABIDO; ET AL. 2000. Chemistry and toughness predict leaf litter decomposition rates over wide spectrum of functional types and taxa in central Argentina. Plant Soil, 218:21-30.

PÉREZ-HARGUINDEGUY, N; S DÍAZ; E GARNIER; S LAVOREL; H POORTER; ET AL. 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot., 61:167-234.

R CORE TEAM. 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

REYNOLDS, BC & MD HUNTER. 2001. Responses of soil respiration, soil nutrients, and litter decomposition to inputs form canopy herbivores. Soil Biol. Biochem., 33:1641-1652.

SEASTEDT, TR. 1984. The role of microarthropods in decomposition and mineralization processes. Annu. Rev. Entomol., 29:25-46.

SESMA, PJ; EY GUIDO & ME PUCHULU. 2010. Geología de la ladera oriental de la Sierra de San Javier, soporte físico para la gestión territorial pp 19-32. En: Grau HR (ed). Ecología de una interfase natural-urbana. La Sierra de San Javier y el Gran San Miguel de Tucumán. EDUNT, Tucumán.

SWIFT, MJ & JM ANDERSON. 1989. Decomposition pp. 547–569. En: Lieth, H, M Werger (eds.).Tropical Rain Forest Ecosystems, Elsevier, Amsterdam.

TECCO, PA. 2006. Riqueza, abundancia y características morfo-funcionales de las especies nativas y exóticas establecidas bajo distintas condiciones de uso de la tierra en cinco ecosistemas del centro-oeste de Argentina. Tesis Doctoral. Escuela de Biología, Facultad de Ciencias Exactas, Físicas y Naturales e Universidad Nacional de Córdoba- Argentina.

TECCO, PA; S DÍAZ; M CABIDO & C URCELAY. 2010. Functional traits of alien plants across contrasting climatic and land-use regimes: do aliens join the locals or try harder than them? J. Ecol., 98:17-27.

VAIERETTI, MV; AM CINGOLANI; N PÉREZ HARGUINDEGUY; DE GURVICH & M CABIDO. 2010. Does decomposition of standard materials differ among grassland patches maintained by livestock? Austral Ecology, 35: 935-943.

VITOUSEK, PM; CM D’ANTONIO; LL LOOPE; M REJMANEK & R WESTBROOKS. 1997. Introduced species: a significant component of human-caused global change. New Zealand J. Ecol., 21:1-16.

VIVANCO, L & AT AUSTIN. 2006. Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America. Oecologia, 150:97–107.

VIVANCO, L & AT AUSTIN. 2008. Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. J. Ecol., 96:727-736.

WALL, D & J MOORE. 1999. Interactions underground, soil biodiversity mutualism and ecosystems processes. Bioscience, 49:108-117.

WARDLE, DA & P LAVELLE. 1997. Linkages between soil biota, plant litter quality and decomposition pp. 107-124. En: Cadisch, G. & KE Giller (eds.). Plant Litter Quality and Decomposition. CAB International, Wallingford.

Published

2014-12-01

How to Cite

Fernández, R. D., & Aragón, R. (2014). Leaf litter decomposition of the most abundant native and exotic woody species in the piedmont of Yungas forest, Tucumán, Argentina. Ecología Austral, 24(3), 286–293. https://doi.org/10.25260/EA.14.24.3.0.5