Taxonomic review of the genus Polylepis. Implications for ecological studies, conservation and restoration
DOI:
https://doi.org/10.25260/EA.18.28.1.1.527Abstract
The number of species in the genus Polylepis has changed, according to the systematic treatments, from 33 to 28; however, until now there is not a clear species delimitation. It has been complicated to define evolutionary origins and understand speciation. This complexity may be the result of different processes acting independently or interacting: recent radiation, poliploidy, hibridization and the human intervention in its distribution, depending of the species group. In this article, we revised the taxonomic status of the genus Polylepis. Twenty-eight species are proposed, with the inclusion of two new species for Perú and one species (P. tomentella) with three subespecies. In addition, gaps of knowledge are analyzed and strategies of research are proposed to improve species delimitation. Incorporating a taxonomic structure could generate new insights to conservation, restoration and management projects; taxonomists and conservationist need to work together to define conservation units to avoid ambiguities and define new strategies.
https://doi.org/10.25260/EA.18.28.1.1.527
References
Barrett, C. F., C. D. Bacon, A. Antonelli, A. Cano, and T. Hofmann. 2016. An introduction to plant phylogenomics with a focus on palms. Botanic Journal of the Linnean Society 182:234-255.
Benoist, R. 1934. Descripton d’ especes nouvelles de phanérogames de l’Equateur. Bulletin de la Société Botanique de France 81:324-326.
Bitter, G. 1911. Revision der Gattung Polylepis. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 45:564-656.
Bitter, G. 1913. UberverschiedeneVarietaten der Polylepis australis. Reptertorium Specierum Novarum Regni Vegetabilis 12:477-479.
Chung, K. -S., W. Elisens, and J. Skvarla. 2010. Pollen Morphology and its phylogenetic significance in the tribe Sanguisorbeae (Rosaceae). Plant Systematics and Evolution 285:135-148.
Cuatrecasas, J. 1941. Notas a la flora de Colombia, IV. Revista de la Academica Colombiana de Ciencias Exactas, Físicas y Naturales 4:337-348.
Cuatrecasas, J. 1942. Notas a la flora de Colombia, V. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 5:16-39.
De Queiroz, K., and J. Gauthier. 1992. Phylogenetic taxonomy. Annual Review of Ecology and Systematics 23:449-480.
Domic, A. I., E. Mamani, and G. Camilo. 2013. Fenología reproductiva de la kewiña (Polylepis tomentella, Rosaceae) en la puna semihúmeda de Chuquisaca, Bolivia. Ecología en Bolivia 48:31-45.
Domic, A. I., P. Bernhardt, R. Edens-Meier, G. R. Camilo, and J. M. Capriles. 2017. Pollination Ecology of Polylepis tomentella (Rosaceae), an Andean Anemophilous Tree Presenting a Potential Flower-Fungal Infection. International Journal of Plant Sciences 178(7):512-521.
Ebeling, S. K., J. Stöcklin, I. Hensen, and H. Auge. 2011. Multiple common garden experiments suggest lack of local adaptation in an invasive ornamental plant. Journal of Plant Ecology 4(4):209-220.
Eriksson, T., M. Hibbss, A. Yoder, C. Delwiche, and M. Donoghue. 2003. The phylogeny of Rosoideae (Rosaceae) based on sequences of the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the trnL/F region of chloroplast DNA. International Journal of Plant Sciences 164:197-211.
Evans, R., and C. Campbell. 2002. The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. American Journal of Botany 89:1478-1484.
Evans, R., L. Alice, C. Campbell, E. Kellog, and T. Dickinson. 2000. The Granule-Bound Starch Synthetase (GBSSI) Gene in the Rosaceae: Multiple Loci and Phylogenetic Utility. Molecular Phylogenetic and Evolution 17:388-400.
Fjedlså, J., and M. Kessler. 1996. Conserving the biological diversity of Polylepis woodlands of the highlands of Peru and Bolivia. A contribution to sustainable natural resource management in the Andes. NORDECO, Copenhagen.
Garnett, T. S., and L. Christidis. 2017. Taxonomy Arachy hampers conservation. Science 547:29-27
Helfgott, D. M., J. Francisco-Ortega, A. Santos-Guerra, R. K. Jansen, and B. B. Simpson. 2000. Biogeography and breeding system evolution of the woody Bencomia alliance (Rosaceae) in Macaronesia Based on ITS Sequence Data. Systematic Botany 25:82-97.
Hensen, I. 1995. Estudios ecológicos y fenológicos sobre Polylepis besseri Hieron en la Cordillera Oriental boliviana. Ecología en Bolivia 23:21-32.
Hensen, I., A. Cierjacks, H. Hirsch, M. Kessler, K. Romoleroux, D. Renison, and K. Wesche. 2012. Historic and recent fragmentation coupled with altitude affect the genetic population structure of one of the world’s highest tropical tree line species. Global Ecology and Biogeography 21:455-464.
Hensen, I., I. Teich, H. Hirsch, H. von Wehrden, and D. Renison. 2011. Range-wide genetic structure and diversity of the endemic tree line species Polylepis australis (Rosaceae) in Argentina. American Journal of Botany 98:1825-1833.
Hieronymus, G. Plantae. Lehmannianae Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 20(III supplement 49):1-72.
Hutchinson, J. 1964. The genera of flowering plant. Oxford University Press, Oxford.
IUCN. 2017. The IUCN Red List of Threatened Species. Version 2017-2. URL: www.iucnredlist.org.
Kerr, M. 2003. A phylogenetic and biogeographic analysis of Sanguisorbeae (Rosaceae) with emphasis of the Pleistocene radiation of the high Andean genus Polylepis. PhD thesis. University of Maryland, Maryland. USA.
Kessler, M. 1995. The genus Polylepis (Rosaceae) in Bolivia. Candollea 50:131-171.
Kessler, M. 2002. The “Polylepis Problem”: Where do we stand? Ecotropica 8:97-110.
Kessler, M., A. Kühn, V. G. Solís Neffa, and I. Hensen. 2014. Complex geographical distribution of ploidy levels in Polylepis australis (Rosaceae), an endemic tree line species in Argentina. International Journal of Plant Sciences 175:955-961.
Kessler, M., and A. N. Schmidt-Lebuhn. 2006. Taxonomical and distributional notes on Polylepis (Rosaceae). Organisms, Diversity and Evolution 6:67-69.
Kuntze, C. E. O. 1898. Revisio generum plantarum. Volume 3, CCCXX. Leipzig. Pp. 576.
Macbride, J. F. 1934. New or renamed spermatophytes mostly Peruvian. Candollea 5:346-402.
Mace, M. G. 2004. The role of taxonomy in species conservation. Phil. Trans R Soc Lond B 359:711-719.
McNeely, J. A. 2002. The role of taxonomy in conserving biodiversity. Journal for Nature Conservation 10:145-153.
Mendoza, W. 2005. Especie nueva de Polylepis (Rosaceae) de la cordillera Vilcabamba (Cusco, Perú). Revista Peruana de Biología 12(1):103-106.
Mendoza, W., and A. Cano. 2012. El género Polylepis en el Perú: taxonomía, morfología y distribución. Editorial Académica Española. España. Pp. 120.
Morgan, D., D. Soltis, and K. Robertson. 1994. Systematic and evolutionary implications of rbcL sequence variation in Rosaceae. American Journal of Botany 81:890-903.
Pease J. B., D. C. Haak, M. W. Hahn, and L. C. Moyle. 2016. Phylogenomics reveals three sources of adaptive variation during a rapid radiation. PLOS Biology 14:e1002379.
Peng, Y., S. Lachmuth, S. C. Gallegos, M. Kessler, P. M. Ramsay, D. Renison, R. Suárez, and I. Hensen. 2015. Pleistocene climatic oscillations rather than recent human disturbance influence genetic diversity in one of the world’s highest treeline species. American Journal of Botany 102:1676-1684.
Pérez de la Paz, J. 2004. Rosaceae-Sanguisorbeae de Macaronesia: género Macetella, Bencomia y Dendropoterium. Palinología, biogeografía, sistemas sexuales y filogenia. Botanica Macaronesica 25:95-126.
Pilger, R. 1906. Rosaceae andinae. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 37:534-541.
Potter, D., F. Gao, P. Bortiri, S. Oh, and S. Baggett. 2002. Phylogenetic relationships in Rosaceae inferred from chloroplast matK and trnL-trnF nucleotide sequence data. Plant Systematics and Evolution 231:77-89.
Potter, D., T. Ericsson, R. Evans, S. Oh, J. Smedmark, D. Morgan, M. Kerr, K. R. Robertson, M. Arsenault, T. A. Dickinson, and C. S. Campbell. 2007. Phylogeny and classification of Rosaceae. Plant Systematics and Evolution 266:5-43.
Romoleroux, K. 1996. Flora of Ecuador: 79. Rosaceae. Publishing House of the Swedish Research Council, Stockholm.
Schmidt-Lebuhn, A. N., J. Fuchs, D. Hertel, H. Hirsch, J. Toivonen, and M. Kessler. 2010. An Andean radiation: polyploidy in the tree genus Polylepis (Rosaceae, Sanguisorbeae). Plant Biology 12:917-926.
Schmidt-Lebuhn, A. N., M. Kessler, and M. Kumar. 2006. Promiscuity in the Andes: Species relationships in Polylepis (Rosaceae, Sanguisorbeae) based on AFLP and morphology. Systematic Botany 31:547-559.
Segovia-Salcedo, M. C., and P. Quijia-Lamina. 2014. Citogeografía de cuatro especies de Polylepis (Rosacea) en el Ecuador: Información relevante para el manejo y conservación de los bosques andinos. En F. Cuesta, J. Sevink, L. D. Llambi, B. De Bievre and J. Posner (eds.). Avances en investigación para la conservación de los páramos andinos, CONDESAN.
Segovia-Salcedo, M. C. 2014. New insights into the evolutionary history of the complex Andean genus Polylepis (Rosaceae: Sanguisorbeae) and implications for conservation and management. PhD thesis. University of Florida. USA. Pp. 182.
Seltmann, P., A. Cocucci, D. Renison, A. Cierjacks, and I. Hensen. 2009a. Mating system, outcrossing distance effects and pollen availability in the wind-pollinated treeline species Polylepis australis BITT. (Rosaceae). Basic and Applied Ecology 10:52-60.
Seltmann, P., D. Renison, A. Cocucci, I. Hensen, and K. Jung. 2007. Fragment size, pollination efficiency and reproductive success in natural populations of wind-pollinated Polylepis australis (Rosaceae) trees. Flora 202:547-554.
Seltmann, P., I. Hensen, D. Reninson, K. Wesche, S. Ploch, J. Duenas, A. Cocucci, and K. Jung. 2009b. Biparental inbreeding depression, genetic relatedness and progeny vigour in a wind-pollinated treeline species in Argentina. Plant Ecology 205:155-164.
Simpson, B. B. 1979. A revision of the genus Polylepis (Rosaceae: Sanguisorbeae). Smithsonian Contributions to Botany 43:1-62.
Simpson, B. B. 1986. Speciation and specialization of Polylepis in the Andes. Pp. 304-316 en F. Vuilleumier and M. Monasterio (eds.). High altitude tropical biogeography. Oxford University Press, Oxford.
Tejedor-Garavito, N., A. Newton, and S. Oldfield. 2015. Regional Red List Assessment of tree species in upper montane forests of the Tropical Andes. Oryx doi:10.1017/S0030605315000198.
Toivonen, J. M., V. Horna, M., Kessler, K., Ruokolainen, and D., Hertel. 2014. Interspecific variation in functional traits in relation to species climatic niche optima in Andean Polylepis (Rosaceae) tree species: evidence for climatic adaptations. Functional Ecology 41:301-312.
Townsend-Peterson, A. 2008. Taxonomy is important in conservation: a preliminary reassessment for Philippine species-level bird taxonomy. Bird Conservation International 16:155-173.
Tsang, S. M., A. L. Cirranello, N. B. Simmon, P. J. J. Bates, and N. B. Simmons. 2016. The Roles of Taxonomy and Systematics in Bat Conservation. Pp. 503-538 en C. Voigt and T. Kingston (eds.). Bats in the Anthropocene: Conservation of Bats in a Changing World. Springer Open. Lubbock, Texas.
UNEP-WCMC. 2004. United Nations Environment Programme. World Conservation Monitoring Center. URL: www.unep-wcmc.org.
Valenzuela, G., and I. Villalba. 2015. A new species of Polylepis from Perú. Arnaldoa 22(2):329-338.
Weimarck, H. 1934. Monograph of the genus Cliffortia. Universitetsbokhandeln, Lund.
Xing, Y., and R. Ree. 2017. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. PNAS 114(17):E3444-E3451 doi: 10.1073/pnas.1616063114.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 María C. Segovia-Salcedo, Alejandra Domic, Tatiana Boza, Michael Kessler
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors retain their rights as follows: 1) by granting the journal the right to its first publication, and 2) by registering the published article with a Creative Commons Attribution License (CC-BY 4.0), which allows authors and third parties to view and use it as long as they clearly mention its origin (citation or reference, including authorship and first publication in this journal). Authors can make other non-exclusive distribution agreements as long as they clearly indicate their origin and are encouraged to widely share and disseminate the published version of their work.