Measurement of stomata and pollen as an indirect indicator of polyploidy in the genus Polylepis (Rosaceae) in Ecuador

Authors

  • Joselin C. Caiza Universidad de las Fuerzas Armadas-ESPE. Sangolquí. Ecuador.
  • Dominique Vargas Universidad de las Fuerzas Armadas-ESPE. Sangolquí. Ecuador.
  • Camila Olmedo Universidad de las Fuerzas Armadas-ESPE. Sangolquí. Ecuador.
  • Mario Arboleda Universidad de las Fuerzas Armadas-ESPE. Sangolquí. Ecuador.
  • Anahi Boada Universidad de las Fuerzas Armadas-ESPE. Sangolquí. Ecuador.
  • Osmar Acurio Universidad de las Fuerzas Armadas-ESPE. Sangolquí. Ecuador.
  • Alexis Debut Universidad de las Fuerzas Armadas-ESPE. Sangolquí. Ecuador.
  • María C. Segovia-Salcedo Universidad de las Fuerzas Armadas-ESPE. Sangolquí. Ecuador. http://orcid.org/0000-0002-7597-2977

DOI:

https://doi.org/10.25260/EA.18.28.1.1.528

Abstract

Polylepis forests (Family: Rosaceae) are originated in the Andes and are considered one of the most threatened forest ecosystems. Throughout their evolutionary history, they have shown several episodes of polyploidy affecting their process of speciation. Cellular structures such as pollen and guard cells are highly influenced by the number of genes in each species, representing an indirect method to determine the degree of ploidy. In this study, the relationship of pollen grain size and the length of the guard cells were analyzed with genome size and chromosome number, in addition to the pollen viability of Polylepis incana, P. pauta, P. microphylla, P. racemosa y P. sericea collected from the Andean highlands of Ecuador. Stomata and pollen grains were photographed at 400X magnification and their length was measured in micrometers using ImageJ program 1.49v. Staining technique was used to determine the viability of the pollen. The results show a positive correlation that varies from R2=0.32 a R2=0.65 between the variables used depending of the species; therefore, it serves as an indirect analysis method for polyploidy. These data are important for the management and conservation of Polylepis in Ecuador, allowing prior identification of potential hybrid individuals and cytotypes along the Ecuadorian Andes in a quick and inexpensive fashion. Additionally, it opens the possibility of use this data in studies of climate change, as well as the determination of parental in reforestation and restoration projects.

https://doi.org/10.25260/EA.18.28.1.1.528

Author Biographies

Dominique Vargas, Universidad de las Fuerzas Armadas-ESPE. Sangolquí. Ecuador.

Departamento de Ciencias de la Vida y Agricultura

Camila Olmedo, Universidad de las Fuerzas Armadas-ESPE. Sangolquí. Ecuador.

Departamento de Ciencias de la Vida y Agricultura

Mario Arboleda, Universidad de las Fuerzas Armadas-ESPE. Sangolquí. Ecuador.

Departamento de Ciencias de la Vida y Agricultura

María C. Segovia-Salcedo, Universidad de las Fuerzas Armadas-ESPE. Sangolquí. Ecuador.

Profesor Asociado

Departamento de Ciencias de la Vida y de la Agricultura

References

Alcántar, J. P. 2014. La Poliploidía y su importancia evolutiva. Temas de ciencia y Tecnología 18:17-29.

Beck, S. L., R. W. Dunlop, and A. Fossey. 2003. Stomatal length and frequency as a measure of ploidy level in black wattle, Acacia mearnsii (de Wild). Botanical Journal of the Linnean Society 141:177-181.

Brandbyge, J., and L. B. Holm-Nielsen. 1987. Reforestation of the High Andes with Local Species, Reports from the Botanical Institute 13:1-114.

Berry, J. A., J. D. Beerling, and P. J. Franks. 2010. Stomata: key players in the earth system, past and present. Curr Opin Plant Biol 13:232-239.

Chaturvedi, P., A. Ghatak, and W. Weckwerth. 2016. Pollen proteomics: from stress physiology to developmental priming. Plant Reprod 29:119-132.

Chung, K., W. J. Elisens, and J. Skvarla. 2010. Pollen morphology and its phylogenetic significance in tribe Sanguisorbeae (Rosaceae). Plant Syst Evol 285:139-148.

Colmenares, M. C., F. J. Rada, and R. Luque. 2005. Anatomía Foliar de Polylepis sericea Wedd. (Rosaceae) a dos altitudes en los altos andes venezolanos. Plantula 3:141-148.

Comai, L. 2005. The advantages and disadvantages of being polyploid. Nature Reviews Genetics 6:836-846.

Domic, A. I., E. Mamani, and C. Gerardo. 2013. Reproductive phenology of kewiña (Polylepis tomentella, Rosaceae) in the semi-humid puna of Chuquisaca (Bolivia). Ecology in Bolivia 48:31-45.

Dermody, O., S. P. Long, and E. H. DeLucia. 2006. How does elevated CO2 or ozone affect the leaf-area index of soybean when applied independently? New Phytol 169:145-155.

Evans, A. 1955. The production and identification of Polyploids in red clover, white clover and lucerne. The New Phytologist 54:149-162.

Guerra, S., and A. Debut. 2012. Comparación entre cuatro protocolos para la preparación de muestras de referencia usando el microscopio electrónico de barrido, Ciencia y Tecnología. ISSN:1390-4663. Universidad de las Fuerzas Armadas, CENCINAT, Sangolquí, Pichincha, Ecuador.

Hassiotou, F., J. Evans, M. Ludwig, and E. Veneklaas. 2009. Stomatal crypts may facilitate diffusion of CO2 to adaxial mesophyll cells in thick sclerophyllspce. Plant, Cell and Environment 32:1596-1611.

Haworth, M., and J. McElwain. 2008. Hot, dry, wet, cold or toxic? Revisiting the ecological significance of leaf and cuticular micromorphology. Palaeogeography, Palaeoclimatology, Palaeoecology 262:79-90.

Hebda, R. J., and C. C. Chinnappa. 1994. Studies on pollen morphology of Rosaceae. Acta Botanica Gallica 141:183-193.

Instituto Geográfico Militar del Ecuador. 2016. URL: goo.gl/GaJ3Xv.

Jordan, G. J., P. H. Weston, R. J. Carpenter, R. A. Dillon, and T. J. Brodribb. 2008. The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae. American Journal of Botany 95:521-530.

Jordan, G. J., R. J. Carpenter, A. Koutoulis, A. Price, and T. J. Brodribb. 2014. Environmental adaptation in stomatal size independent of the effects of genome size. New Phytologist 205:608-617.

Jorgensen, P. M., and S. León-Yánez. 1999. Catalogue of the vascular plants of Ecuador. Monogr Syst Bot Missouri Bot Gard 75:1-11.

Kerr, M. S. 2004. A phylogenetic and biogeographic analysis of Sanguisorbeae (Rosaceae), with emphasis on the Pleistocene radiation of the High Andean genus Polylepis. Tesis doctoral, University of Maryland, Maryland, U.S.A. Pp. 191.

Kessler, M., and A. N. Schmidt-Lebuhn. 2005. Taxonomical and distributional notes on Polylepis (Rosaceae). Organisms, Diversity and Evolution 6:67-69.

Kessler, M. 2006. Bosques de Polylepis. Botánica Económica de los Andes Centrales. Pp. 110-120.

Lagos T. C., C. M. Caetano, F. A. Vallejo, J. E. Muñoz, H. Criollo, and C. Olaya. 2005. Caracterización palinológica y viabilidad polínica de Physalis peruviana L. y Physalis philadelphica Lam. Agronomía Colombiana 23:55-61.

Leitch, I. J., and M. D. Bennett. 1997. Polyploidy in angiosperms. Trends in Plant Science 2:470- 476.

Liu, L., L. Yu, and S. Edwards. 2010. A maximum pseudo-likelihood approach for estimating species trees under the coalescent model. BMC Evolutionary Biology 10:1-18.

Longhi, S., L. Giongo, M. Buti., N. Surbanovski., R. Viola, R. Velasco., J. Ward, and D. J. Sargent. 2014. Molecular genetics and genomics of the Rosoideae: State of the art and future perspectives. Horticulture Research 1:2052-7276.

Mable, B. K. 2004a. Why polyploidy is rarer in animals than in plants: myths and mechanisms. Biological Journal of the Linnean Society 82:453-466.

Mable, B. K. 2004b. Breaking down taxonomic barriers in polyploidy research. Trends Plant Sci 8:582-590.

Masterson, J. 1994. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421-424.

Mendoza, W., and A. Cano. 2011. Diversidad del género Polylepis (Rosaceae, Sanguisorbeae) en los Andes peruanos. Revista Peruana de Biología 18:197-200.

Metcalfe C. R., and L. Chalk. 1965. Anatomy of Dicotyledons Volume I. Clarendon Press Oxford. London, England, United Kingdom.

Ministerio del Ambiente del Ecuador. 2016. URL: goo.gl/JjvWSH.

Mishra, M. K. 1997. Stomatal Characteristics at Different Ploidy Levels in Coffea L. Annals of Botany 80:689-692.

Nicotra, A. B., O. K. Atkin., S. P. Bonser, A. M. Davidson, E. J. Finnegan, U. Mathesius, P. Poot, M. D. Purugganan, C. L. Richards, F. Valladares, and M. van Kleunen. 2010. Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684-692.

Oliveira de, V. M., E. R. Forni-Martins, P. M. Magalhães, and M. N. Alves. 2004. Chromosomal and morphological studies of diploid and polyploid cytotypes of Stevia rebaudiana (Bertoni) Bertoni (Eupatorieae, Asteraceae). Genetics and Molecular Biology 27:215-222.

Otto, S., and J. Whintton. 2000. Polyploid Incidence and Evolution. Annu Rev Genet 34:401-37.

Palanyandy, S. R., P. Suranthran, S. Gantait, U. R. Sinniah, S. Subramaniam, M. A. Aziz, and S. H. Roowi. 2013. In vitro developmental study of oil palm (Elaeis guineensis Jacq.). Acta physiologiae plantarum 35:1727-1733

Pretell, J., D. Ocaña, R. Jon, and E. Barahona. 1985. Apuntes sobre algunas especies forestales nativas de la sierra peruana. FAO/Holanda/INFOR, Lima, Lima, Perú.

Quija-Lamina, P., M. C. Segovia-Salcedo, M. Jadán, and K. Proaño. 2010. Estandarización de la metodología para el conteo cromosómico en especies del género Polylepis en el Ecuador. Revista Ecuatoriana de Medicina y Ciencias Biológicas 31:33-49.

Ramírez, F., V. Robledo, R. Foroughbakhch, A. Benavides, and M. A. Alvarado. 2013. Viabilidad de polen, densidad y tamaño de estomas en autotetraploides y diploides de Physalis ixocarpa. Botanical Sciences 91:11-18.

Reigosa, M. J. 2001. Handbook of Plant Ecophysiology Techniques. University of Vienna, Austria. DOI: 10.1007/0-306-48057-3_17.

Read, J., C. Edwards, G. D. Sanson, and N. Aranwela. 2000. Relationships between sclerophylly, leaf biomechanical properties and leaf anatomy in some Australian heath and forest species. Plant Biosystems 134:261-277.

Renison, D., A. Singolani, and R. Suárez. 2002. Revista Chilena de Historia Natural 75:719-727.

Renison, D., I. Hensen, and A. Cingolani. 2004. Anthropogenic soil degradation affects seed viability in Polylepis australis mountain forests of central Argentina. Forest Ecology and Management 196:327-333.

Renison, D., A. E. Cuyckens, S. Pacheco, G. F. Guzman, H. R. Grau, P. Marcora, G. Robledo, A. M. Cingolani, J. Dominguez, M. Landi, L. Bellis, and I. Hensen. 2013. Distribución y estado de conservación de las poblaciones de árboles y arbustos del género Polylepis (Rosaceae) en las montañas de Argentina. Ecología Austral 23:27-36.

Reynel, C., and G. J. Leon. 1990. Árboles y arbustos andinos para agroforestería y conservación de suelos. Proyecto FAO/ Holanda/DGFF, Lima, Perú.

Romoleroux, K. 1996. Rosaceae. Pp. 71-89 in G. Harling and L. Andersson (eds.). Flora of Ecuador. Council for Nordic Publications in Botany, Copenhagen, Denmark.

Roth-Nebelsick, A. 2007. Computer-based studies of diffusion through stomata of different architecture. Annals of Botany 100:23-32.

Schmidt-Lebuhn, A. N., J. Fuchs, D. Hertel, H. Hirsch, J. Toivonen, and M. Kessler. 2010. An Andean radiation: polyploidy in the tree genus Polylepis (Rosaceae, Sanguisorbeae). Plant Biology 12:917-926.

Schwanitz, F. 1952. Einige kritische Bemerkungen zur Methode der Bestimmung der Polyploidie durch Messung der Pollen and Spaltoffnungsgrosse. Der Ziichter 22:273-275.

Segovia-Salcedo, M. C. 2011. Los riesgos de la reforestación de los páramos con especies exóticas: El caso de Polylepis racemosa. Propuestas Andinas Páramo Número 4. Consorcio para el Desarrollo Sostenible de la Ecorregión Andina (CONDESAN), Proyecto Páramo Andino (PPA), Quito, Pichincha, Ecuador.

Segovia-Salcedo, M. C. 2014. New Insights into The Evolutionary History of The Complex Andean Genus Polylepis (Rosaceae: Sanguisorbeae) and Implications for Conservation and Management. PhD thesis, University of Florida. U.S.A. Pp. 182.

Segovia-Salcedo M. C., and P. Quijia-Lamina. 2014. Citogeografía de cuatro especies de Polylepis (Rosaceae) en el Ecuador: Información relevante para el manejo y conservación de los bosques andinos. Pp. 467-485 en F. Cuesta, J. Sevink, L. D Llambi, B. De Bievre and J. Posner (eds.). Avances en investigación para la conservación de los páramos andinos. CONDESAN, Quito, Pichincha, Ecuador.

Simpson, B. B. 1986. Speciation and specialization of Polylepis in the Andes. Pp. 304-316 in F. Vuillemier and M. Monasterios (eds.). High altitude tropical biogeography. Oxford University Press. England.

Simpson, B. B. 1979. A revision of the genus Polylepis (Rosaceae: Sanguisorbeae). Smithsonian Contributions to Botany 43:1-62.

Soltis, P. S., D. B. Marchant, Y. V. de Peer, and D. E, Soltis. 2015. Polyploidy and genome evolution in plants. Genetics and Development 35:119-125.

Speckmann, G., J. Post, and H. Dijkstra. 1995. The Length of Stomata as an Indicator for Polyploidy in Rey-Grasses. Euphytica 14:225-230.

Srinivasan, S., and P. M. Gaur. 2012. Genetics and characterization of an open flower mutant in chickpea. Journal of Heredity 103:297-302.

Stone, J. L., J. D. Thomson, and S. J. Dent. 1995. Assessment of pollen viability in hand-pollination experiments: A review. American Journal of Botany 82:1186-1197.

Thair, S., and M. Thair. 2009. S.E.M. Structure distribution and taxonomic significance of foliar stomata in Sibbaldia L. Species (Rosaceae). Pakistan Journal Botany 41: 2137-2143.

Taylor, G., P. J. Tricker, F. Z. Zhang, V. J. Alston, F. Miglietta, and E. Kuzminsky. 2003. Spatial and Temporal Effects of Free-Air CO2 Enrichment (POPFACE) on leaf growth, cell expansion, and cell production in a closed canopy of poplar. Plant Physiol 131:177-185.

Vargas, G. 2011. Botánica General: desde los musgos hasta los árboles. Editorial Universidad Estatal a Distancia. San José, San José, Costa Rica.

Vatén, A., and D. C. Bergmann. 2012. Mechanisms of stomatal development: an evolutionary view. EvoDevo 3:1-11.

Villota, S. D. 2012. Evaluación de la dinámica poblacional en especies simpátricas de Polylepis en el Páramo de la Virgen, provincia de Napo y Pichincha mediante marcadores moleculares. Tesis de licenciatura. Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Pichincha. Ecuador. Pp. 106.

Wendel, J. 2015. The wondrous cycles of polyploidy in plants. American Journal of Botany 102:1753-1756.

Yang, N., E. H. Rong., Q. R. Li, J. Dong, T. Q. Du, X. M. Zhao, and Y. X. Wu. 2015. Tetraploid Induction and Identification of Gossypium arboreum. Agricultural Sciences 6:436-444.

Morfometría y morfología de estomas y de polen como indicadores indirectos de poliploidía en especies del género Polylepis (Rosaceae) en Ecuador

Published

2018-05-07

How to Cite

Caiza, J. C., Vargas, D., Olmedo, C., Arboleda, M., Boada, A., Acurio, O., Debut, A., & Segovia-Salcedo, M. C. (2018). Measurement of stomata and pollen as an indirect indicator of polyploidy in the genus Polylepis (Rosaceae) in Ecuador. Ecología Austral, 28(1-bis), 175–187. https://doi.org/10.25260/EA.18.28.1.1.528