Morphological-functional traits, tree diversity, growth rate and carbon sequestration in Polylepis species and ecosystems of southern Ecuador

Authors

  • Javier Montalvo Departamento de Ecología y Biología Animal, Universidad de Vigo, España. Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ecuador. Fundación Matrix, Investigación y Desarrollo Sostenible, España.
  • Danilo Minga Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ecuador.
  • Adolfo Verdugo Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ecuador.
  • Josué López Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ecuador.
  • Deisy Guazhambo Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ecuador. Fundación Matrix, Investigación y Desarrollo Sostenible, España.
  • Diego Pacheco Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ecuador.
  • David Siddons Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ecuador.
  • Antonio Crespo Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ecuador.
  • Edwin Zárate Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ecuador.

DOI:

https://doi.org/10.25260/EA.18.28.1.1.557

Abstract

The species of the genus Polylepis are the most important trees of high altitude woodlands in the Andes, an area with great climatic variation from Venezuela to Argentina. In the humid climate of the Cajas Massif (southern Ecuador), four native Polylepis species form little known woodlands between 2800 and 4400 m a.s.l.: P. reticulata, P. incana, P. weberbaueri and P. lanuginosa (the latter, endemic to Ecuador). Morphological-functional traits of these species and of another introduced (P. racemosa), and attributes at the population and ecosystem levels relevant to understanding their local distribution and the effects of global change were studied. Leaf area decreases with altitude, showing P. lanuginosa one of the largest of the genus Polylepis (17.3 cm2). High stem water content (>55%) and low stem wood density of three species suggest an ecological response to primary production limitation due to cold and/or climatic aridity. Tree species diversity (Shannon index) is moderate in the woodlands of P. reticulata and P. incana and relatively high in P. lanuginosa ones, with maxima higher than 3 bits. Tree species diversity decreases non-linearly with increasing Polylepis tree density, always greater than 400 individuals/ha and frequently more than 1000 individuals/ha. Aboveground biomass is a very variable ecosystem attribute and remarkable in some woodlands (about 200 Mg C/ha). The diameter growth rate at breast height of P. reticulata after seven years is 1.2 mm/year, and the average carbon sequestration rate is 2.6±0.3 Mg C.ha-1.year-1, outstanding for a slow-growing genus. Polylepis woodlands conservation is pertinent to preserve threatened high Andean biodiversity and mitigate climate change by its ability to retain carbon in biomass.

https://doi.org/10.25260/EA.18.28.1.1.557

Author Biography

Javier Montalvo, Departamento de Ecología y Biología Animal, Universidad de Vigo, España. Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ecuador. Fundación Matrix, Investigación y Desarrollo Sostenible, España.

Profesor Titular de Ecología. Departamento de Ecología y Biología Animal

References

Azócar, A., F. Rada, and C. García-Núñez. 2007. Functional characteristics of the arborescent genus Polylepis along a latitudinal gradient in the high Andes. Interciencia 32:663-668.

Beltrán, K., S. Salgado, F. Cuesta, S. León-Yánez, K. Romoleroux, E. Ortiz, A. Cárdenas, and Velástegui, A. 2009. Distribución Espacial, Sistemas Ecológicos y Caracterización Florística de los Páramos en el Ecuador. EcoCiencia, Proyecto Páramo Andino y Herbario QCA. Quito, Ecuador.

Borchert, R. 1994. Soil and Stem Water Storage Determine Phenology and Distribution of Tropical Dry Forest Trees. Ecology 75:1437-1449.

Chave, J., C. Andalo, S. Brown, M.A. Cairns, J.Q. Chambers, D. Eamus, H. Folster, F. Fromard, N. Higuchi, T. Kira, J. P. Lescure, B. W. Nelson, H. Ogawa, H. Puig, B. Riera, and T. Kamakura. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87-99.

Chave, J., H. C. Muller-Landau, T. R. Baker, T. Easdale, H. ter Steege, and O. Campbell. 2006. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications 16:2356-2367.

Cierjacks, A., J. E. Iglesias, K. Wesche, and I. Hensen. 2007. Impact of sowing, canopy cover and litter on seedling dynamics of two Polylepis species at upper treelines in central Ecuador. Journal of Tropical Ecology 23:309-318.

Coblentz, D., and P. L. Keating. 2008. Topographic controls on the distribution of tree islands in the high Andes of south-western Ecuador. J Biogeogr 35:2026-2038.

Colmenares-Arteaga, M., F. Rada, and R. Luque. 2005. Anatomía foliar de Polylepis sericea Wedd. (Rosaceae) a dos altitudes en los Altos andes venezolanos. Plántula 3:141-148.

Cuyckens, G. A. E., D. A. Christie, A. I. Domic, L. R. Malizia, and D. Renison. 2016. Climate change and the distribution and conservation of the world's highest elevation woodlands in the South American Altiplano. Global and Planetary Change 137:79-87.

Domic, A. I., and J. M. Capriles. 2009. Allometry and effects of extreme elevation on growth velocity of the Andean tree Polylepis tarapacana Philippi (Rosaceae). Plant Ecol 205:223-234.

Fehse, J., R. Hofstede, N. Aguirre, Ch. Paladines, A. Kooijman, and J. Sevink. 2002. High altitude tropical secondary forests: a competitive carbon sink? Forest Ecology and Management 163:9-25.

Fjeldså, J. 2002. Polylepis Forest - vestiges of vanishing ecosystem in the Andes. Ecotropica 8:111-125.

Garnier, E., J. Cortez, G. Billes, M. L. Navas, C. Roumet, M. Debussche, G. Laurent, A. Blanchard, D. Aubry, and A. Bellmann. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630-2637.

Gosling, W. D., J. A. Hanselman, C. Knox, B. G. Valencia, and M. B. Bush. 2009. Long term drivers of change in Polylepis woodland distribution in the central Andes. Journal of Vegetation Science 20:1041-1052.

Hertel, D., and K. Wesche. 2008. Tropical moist Polylepis stands at the treeline in East Bolivia: the effect of elevation on stand microclimate, above- and below-ground structure, and regeneration. Trees 22:303-315.

Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965-1978.

Hoch, G., and C. Körner. 2005. Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Functional Ecology 19:941-951.

Kessler, M. 2000. Observations on a human-induced fire event at a humid timberline in the Bolivian Andes. Ecotropica 6:89-93.

Kessler, M. 2002. The “Polylepis problem”: where do we stand? Ecotropica 8:97-110.

Kessler, M. 2006. Bosques de Polylepis. Pp. 110-120 in R. Moraes, B. Øllgaard, L. P. Kvist, F. Borchsenius and H. Balslev. (eds.). Botánica Económica de los Andes Centrales. La Paz, Bolivia.

Kessler, M., and A. N. Schmidt-Lebuhn. 2006. Taxonomical and distributional notes on Polylepis (Rosaceae). Organisms Diversity and Evolution 6:67-69.

Kessler, M., J. M. Toivonen, S. P. Sylvester, J. Kluge, and D. Hertel. 2014. Elevational patterns of Polylepis tree height (Rosaceae) in the high Andes of Peru: role of human impact and climatic conditions. Frontiers in Plant Science 194:1-12.

Körner, C. 2012. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits. Springer, Berlin, Germany.

Macek, P., J. Macková, and F. de Bello. 2009. Morphological and ecophysiological traits shaping altitudinal distribution of three Polylepis treeline species in the dry tropical Andes. Acta Oecologica 35:778-785.

Martin, A. R., and S. C. Thomas. 2011. A Reassessment of Carbon Content in Tropical Trees. PLoS ONE 6:e23533. doi:10.1371/journal.pone.0023533.

Mendoza, W., and A. Cano. 2012. El género Polylepis en el Perú. Taxonomía, Morfología y Distribución. Editorial Académica Española, Saarbrücken, Germany.

Minga, D., and A. Verdugo. 2007. Riqueza florística y endemismo del Parque Nacional Cajas. Informe técnico no publicado. Herbario Azuay, Universidad del Azuay, Cuenca, Ecuador.

Minga, D., R. Ansaloni, A. Verdugo, and C. Ulloa Ulloa. 2016. Flora del Páramo del Cajas. Universidad del Azuay, Cuenca, Ecuador.

Poorter, H., U. Niinemets, L. Poorter, I. J. Wright, and R. Villar. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565-588.

Pretell, J., D. Ocaña, R. Jon, and E. Barahona. 1985. Apuntes sobre algunas especies forestales nativas de la sierra peruana. Proyecto FAO ⁄ Holanda ⁄ Infor, Lima, Perú.

Pretzsch, H., and P. Biber. 2005. A re-evaluation of Reineke’s rule and stand density index. Forest Science 51:304-320.

Purcell, J., A. Brelsford, and M. Kessler. 2004. The World's Highest Forest. American Scientist 92:454-461.

Ramos, C., S. P. Buitrago, K. L. Pulido, and L. J. Vanegas. 2013. Variabilidad ambiental y respuestas fisiológicas de Polylepis cuadrijuga (Rosaceae) en un ambiente fragmentado en el Páramo de la Rusia (Colombia). Rev Biol Trop 61:351-361.

Renison, D., I. Hensen, and R. Suárez. 2011. Landscape structural complexity of high-mountain Polylepis australis forests: A new aspect of restoration goals. Restoration Ecology 19:390-398.

Renison, D., G. A. E. Cuyckens, S. Pacheco, G. F. Guzmán, H. R. Grau, P. Márcora, G. Robledo, A. M. Cingolani, J. Dominguez, M. Landi, L. Bellis, and I. Hensen. 2013. Distribución y estado de conservación de las poblaciones de árboles y arbustos del género Polylepis (Rosaceae) en las montañas de Argentina. Ecología Austral 23:27-36.

Rodríguez, F., and H. Behling. 2012. Late Quaternary vegetation, climate and fire dynamics, and evidence of early to mid-Holocene Polylepis forests in the Jimbura region of the southernmost Ecuadorian Andes. Palaeogeography, Palaeoclimatology, Palaeoecology 350-352:247-25.

Romoleroux, K. 1992. Rosaceae in the Páramo of Ecuador. Pp. 85-94 in H. Balsey and J.L. Lutevb (eds.). Páramo: An Andean Ecosystem under Human Influence. Academic Press, Londres, United Kingdom.

Romoleroux, K. 1996. Rosaceae. Pp. 1-152 in G. Harling and L. Anderson (eds.). Flora of Ecuador. No. 56. University of Götenborg, Riksmuseum, Pontificia Universidad Católica del Ecuador; Göteborg, Stockholm, Quito.

Romoleroux, K., D. Cárate, R. Erler, and H. Navarrete. 2008. Los Bosques olvidados de los Andes. Nuestra Ciencia 10:34-37.

Schmidt‐Lebuhn, A. N., J. Fuchs, D. Hertel, H. Hirsch, J. Toivonen, and M. Kessler. 2010. An Andean radiation: polyploidy in the tree genus Polylepis (Rosaceae, Sanguisorbeae). Plant Biology 12:917-926.

Segovia-Salcedo, M. C. 2011. Los riesgos de la reforestación de los páramos con especies exóticas: el caso de Polylepis racemosa. Propuestas andinas No. 4. CONDESAN, Quito, Ecuador.

Segovia-Salcedo, M. C., and P. Quijia-Lamiña 2013. Citogeografía de cuatro especies de Polylepis (Rosaceae) en el Ecuador: Información relevante para el manejo y conservación de los bosques andinos. Pp. 467-485 in F. Cuesta, J. Sevink, L. D. Llambí, B. de Bièvre and J. Posner (eds.). Avances en investigación para la conservación de los páramos andinos. CONDESAN, Quito, Ecuador.

Simpson, B. B. 1979. A revision of the genus Polylepis (Rosaceae: Sanguisorbeae). Smithson. Contrib. Bot. 43. Smithsonian Institution, Washington, D.C., USA.

Simpson, W. T. 1993. Specific gravity, moisture content, and density relationship for wood. Gen. Tech. Rep. FPL-GTR-76. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA.

Spracklen, D. R., and V. Righelato. 2016. Carbon storage and sequestration of re-growing montane forests in southern Ecuador. Forest Ecology and Management 364:139-144.

Tejedor Garavito, N., A. C. Newton, and S. Oldfield. 2015. Regional Red List assessment of tree species in upper montane forests of the Tropical Andes. Oryx 49:397-409.

Tejedor Garavito, N., N. Álvarez, S. Arango Caro, A. Araujo Murakami, C. Blundo, T. E. Boza Espinoza, et al. 2012. Evaluación del estado de conservación de los bosques montanos en los Andes tropicales. Ecosistemas 21:148-166.

Toivonen, J. M., V. Horna, M. Kessler, K. Ruokolainen, and D. Hertel. 2014. Interspecific variation in functional traits in relation to species climatic niche optima in Andean Polylepis (Rosaceae) tree species: evidence for climatic adaptations. Functional Plant Biology 41:301-312.

Vásquez, E., B. Ladd, and N. Borchard. 2014. Carbon storage in a high-altitude Polylepis woodland in the Peruvian Andes. Alp. Botany 124:71-75.

Villar, R., J. Ruiz-Robleto, J. L. Ubera, and H. Poorter. 2013. Exploring variation in leaf mass per area (LMA) from leaf to cell: an anatomical analysis of 26 woody species. American Journal of Botany 100:1969-1980.

Zanne, A. E., G. López-González, D. A. Coomes, J. Ilic, S. Jansen, S. L. Lewis, R. B. Miller, N. G. Swenson, M. C. Wiemann, and J. Chave. 2009. Data from: Towards a worldwide wood economics spectrum. Dryad Digital Repository. http://dx.doi.org/10.5061/dryad.234.

Características morfológico-funcionales, diversidad arbórea, tasa de crecimiento y de secuestro de carbono en especies y ecosistemas de Polylepis del sur de Ecuador

Published

2018-04-29

How to Cite

Montalvo, J., Minga, D., Verdugo, A., López, J., Guazhambo, D., Pacheco, D., Siddons, D., Crespo, A., & Zárate, E. (2018). Morphological-functional traits, tree diversity, growth rate and carbon sequestration in Polylepis species and ecosystems of southern Ecuador. Ecología Austral, 28(1-bis), 249–261. https://doi.org/10.25260/EA.18.28.1.1.557