Climatic change and species modeling of Stevia (Asteraceae) in northwestern Argentina

Authors

  • Juan F. Rodríguez-Cravero División Plantas Vasculares, Museo Argentino de Ciencias Naturales (MACN-CONICET). Buenos Aires, Argentina.
  • Mariana A. Grossi División Plantas Vasculares, Museo de La Plata (FCNyM, UNLP). La Plata, Argentina.
  • Taryn Fuentes-Castillo Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile. Santiago, Chile.
  • Diego G. Gutiérrez División Plantas Vasculares, Museo Argentino de Ciencias Naturales (MACN-CONICET). Buenos Aires, Argentina.

DOI:

https://doi.org/10.25260/EA.17.27.3.0.588

Abstract

The high biodiversity and species richness, along with a great variety of ecosystems, turn northwestern Argentina into an adequate area for study the possible effects of climate change on the distribution of organisms. Asteraceae is a well-represented family of flowering plants in this area; especially, the genus Stevia, with 25 species which inhabit different environments. The goals of this study were: 1) to model habitat suitability for five species of Stevia distributed in northwestern Argentina, and 2) to project such suitability under a possible greenhouse gas emission scenario by 2050. Species S. alpina, S. breviaristata, S. minor, S. vaga and S. yaconensis were analyzed. Results showed that, when comparing maps based on current and future climatic conditions, all Stevia species would undergo changes in their fitness ranges. The trends observed in both future climate scenarios are similar, although they show more drastic consequences in the rcp8.5 model. Stevia alpina, S. breviaristata and S. minor reduce their area of aptitude, while S. vaga and S. yaconensis experience an increase of said area. Except for S. minor, the species showed a major tendency to migrate from East to West, a phenomenon known as altitude shift. Stevia minor would be the more affected species in a higher gas emission scenario since it will suffer a reduction greater than 80% for its suitability values greater than 0.65.

DOI: https://doi.org/10.25260/EA.17.27.3.0.588

Author Biography

Juan F. Rodríguez-Cravero, División Plantas Vasculares, Museo Argentino de Ciencias Naturales (MACN-CONICET). Buenos Aires, Argentina.

Becario Doctoral CONICET, División Plantas Vasculares

References

Aagesen L., C. A. Szumikb, F. O. Zuloaga, and O. Morrone. 2009. Quantitative biogeography in the South America highlands - Recognizing the Altoandina, Puna and Prepuna through the study of Poaceae. Cladistics 24:1-16.

Aagesen, L., M. J. Bena, S. Nomdedeu, A. Panizza, R. P. López, and F. O. Zuloaga. 2012. Areas of endemism in the southern central Andes. Darwiniana 50:218-251.

Armesto, L. O., E. Quilarque, and F. J. M. Rojas-Runjaic. 2015. New locality records and geographic distribution map of Dendropsophus meridensis (Rivero, 1961) (Anura: Hylidae) in the Andes of Venezuela. Check List 11(1):1-5.

Barros, V., C. Vera, E. Agosta, D. Araneo, I. Camilloni, A. Carril, M. Doyle, O. Frumento, M. Nuñez, M. Ortiz De Zárate, O. Penalba, M. Rusticucci, C. Saulo, and S. Solman. 2015. Cambio Climático en Argentina; tendencias y proyecciones. 3° Comunicación Nacional de la República Argentina a la Convención Marco de las Naciones Unidas sobre Cambio Climático. Centro de Investigaciones del Mar y la Atmósfera. Anexo II.

Bennett, M., M. New, J. Marino, and C. Sillero. 2016. Climate complexity in the Central Andes: A study case on empirically-based local variations in the Dry Puna. Journal of Arid Environments 128:40-49.

Beniston, M. 1997. Variations of Snow Depth and Duration in the Swiss Alps over the last 50 Years: Links to Changes in Large-scale Climatic Forcings, Climatic Change 36:281-300.

Biganzoli, F., C. Larsen, and A. G. Rolhauser. 2013. Range expansion and potential distribution of the invasive grass Bromus tectorum in southern South America on the base of herbarium records. Journal of Arid Environments 97:230-236.

Botero-Delgadillo, E., C. A. Páez, and J. Sanabria-Mejía. 2012. Discovery of two new localities for Todd’s parakeet Pyrrhura picta caeruleiceps using distribution models: Enhancing knowledge of a little known neotropical bird. Ardeola 59:237-252.

Brown, D. A, and S. Pacheco. 2006. Propuesta de actualización del mapa ecorregional de la Argentina. Pp. 28-31 en D. A. Brown, U. Martínez Ortiz, M. Acerbi and J. Corcuera (eds.). La Situación Ambiental Argentina 2005. Fundación Vida Silvestre Argentina, Buenos Aires, Argentina.

Bush, M. B. 2002. Distributional change and conservation on the Andean flank: a palaeoecological perspective. Global Ecology and Biogeography 11:463-473.

Cabrera, A. L. 1976. Regiones fitogeográficas argentinas. Pp. 1-85 en W. F. Kugler (ed.). Enciclopedia argentina de agricultura y jardinería, Tomo 2(1). Acme, Buenos Aires, Argentina.

Cabrera, A. L. 1978. Compositae. Pp. 1-726 en A. L. Cabrera (ed.). Flora de la Provincia de Jujuy. Colección Científica del Instituto Nacional de Tecnología Agropecuaria 13(10). INTA, Buenos Aires, Argentina.

Cabrera, A. L., and S. E. Freire. 1997. Asteraceae, Tribu II. Eupatorieae (excepto Mikania). Pp. 1-54, 76-104 en A. T. Hunziker (ed.). Flora Fanerogámica Argentina 47. PROFLORA CONICET, Buenos Aires, Argentina.

Carrilla, J., H. R. Grau, L. Paolini, and M. Morales. 2013. Lake fluctuations, Plant productivity, and Long-Term Variability in High-Elevation Tropical Andean Ecosystems. Arctic, Antarctic, and Alpine Research 45(2):179-189.

Coitiño, H. I., F. Montenegro, A. Fallabrino, E. M. González, and D. Hernández. 2013. Distribución actual y potencial de Cabassous tatouay y Tamandua tetradactyla en el límite sur de su distribución: implicancias para su conservación en Uruguay. Edentata 14:23-34.

Corlett, R. T., and D. A. Westcott. 2013. Will plant movements keep up with climate change? Trends in Ecology and Evolution 28(8):482-8.

Cuesta-Camacho, F., M. Peralvo, and A. Ganzenmüller. 2008. Posibles efectos del calentamiento global sobre el nicho climático de algunas especies en los Andes Tropicales. Páramo y Cambio Climático 23:15-38.

Cuyckens, G. A. E., D. A. Christie, A. I. Domic, L. R. Malizia, and D. Renison. 2016. Climate change and the distribution and conservation of the world's highest elevation woodlands in the South American Altiplano. Global and Planetary Change 137:79-87.

Deblauwe, V., V. Droissart, R. Bose, and T. L. P. Couvreur. 2016. Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics. Global Ecology and Biogeography 25(4):443-454.

Deutsch, C. A., J. J. Tewksbury, R. B. Huey, K. S. Sheldon, C. K. Ghalambor, et al. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America 105:6668-6672.

Dudík, M., S. J. Phillips, and R. E. Schapire. 2007. Maximum entropy density estimation with generalized regularization and an application to species distribution modeling. Journal of Machine Learning Research 8:1217-1260.

Elith, J., C. H. Graham, R. P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. M. M. Overton, A. Townsend Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberón, S. Williams, M. S. Wisz, and N. E. Zimmermann. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129-151.

Elith, J., S. J. Phillips, T. Hastie, M. Dudík, Y. E. Chee, and C. J. Yates. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17:43-57.

Feeley, K. J, and M. R. Silman. 2010. Land-use and climate change effects on population size and extinction risk of Andean plants. Global Change Biology 16:1-8.

Ferrier, S., and A. Guisan. 2006. Spatial modelling of biodiversity at the community level. Journal of Applied Ecology 43:393-404.

Fitzpatrick, M. C., N. J. Gotelli, and A. M. Ellison. 2013. MaxEnt versus MaxLike: empirical comparisons with ant species distributions. Ecosphere 4(5):1-15.

Foster, P. 2001. The potential negative impacts of global change on tropical montane cloud forests. Earth-Science Reviews 55:73-106.

Freire, S. E. 2008. Stevia. Pp. 1509-1517 en F. Zuloaga, O. Morrone and M. J. Belgrano (eds.). Catálogo de las Plantas Vasculares del Cono Sur (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay). Monographs in Systematic Botany from the Missouri Botanical Garden 107(2). Estudio Sigma S.R.L., Buenos Aires, Argentina.

Freire, S. E., G. Sancho, E. Urtubey, N. D. Bayón, L. Katinas, D. A. Giuliano, D. G. Gutiérrez, A. A. Sáenz, L. Iharlegui, C. Monti, and G. Delucchi. 2005. Catalogue of Asteraceae of Chacoan plain, Argentina. Compositae Newsletter 43:1-126.

Freire, S. E., and A. M. Molina. 2009. Flora Chaqueña-Argentina: Formosa, Chaco y Santiago del Estero. Familia Asteraceae. Ediciones INTA, Buenos Aires.

Freire, S. E., N. D. Bayón, C. Monti, D. A. Giuliano, L. Ariza Espinar, A. A. Sáenz, M. V. Perea, and G. Delucchi. 2011. Sinopsis de las Asteraceae de la Provincia de Catamarca. Editorial Científica de la Universidad Nacional de Catamarca, Catamarca, Argentina. Pp. 235.

Freire, S. E., and L. Ariza Espinar. 2014. Stevia. Pp. 409-435 en F. O. Zuloaga, M. J. Belgrano and A. M. Anton (eds.). Flora Vascular de la República Argentina 7(1). Estudio Sigma SRL, Buenos Aires.

Godoy-Bürki, A. C. 2015. Diversidad de plantas vasculares en zonas áridas del Noroeste de Argentina (NOA): Patrones de Distribución, Prioridades de Conservación y Cambio climático. Tesis Doctoral. Doctor en Biología. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Argentina. Pp. 147.

Godoy-Bürki, A. C. 2016. Efectos del cambio climático sobre especies de plantas vasculares del sur de los Andes Centrales: un estudio en el noroeste de Argentina (NOA). Ecología Austral 26:83-94.

Godoy-Bürki, A. C., F. Biganzoli, J. M. Sajama, P. Ortega-Baes, and L. Aagesen. 2017. Tropical high Andean drylands: species diversity and its environmental determinants in the Central Andes. Biodiversity and Conservation. doi: 10.1007/s10531-017-1311-2.

González, J. A. 2005. Los ambientes naturales en áreas montañosas del noroeste argentino, su interrelación con países limítrofes y su necesidad de protección, recuperación y conservación. Serie Conservación de la Naturaleza Nº 15. Pp. 28

González, J. A. 2009. Climatic change and other anthropogenic activities are affecting environmental services on the Argentina Northwest (ANW). Environmental Earth Sciences 6:1-2.

Grau, R. H., I. N. Gasparri, and M. T. Aide. 2005. Agriculture expansion and deforestation in seasonally dry forests of north-west Argentina. Environmental Conservation 32:140-148.

Guisan, A., and W. Thuiller. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8:993-1009.

Gutiérrez, D. G., M. Muñoz-Schick, M. Grossi, J. F. Rodriguez-Cravero, V. Morales, and A. Moreira-Muñoz. 2016. The genus Stevia (Eupatorieae, Asteraceae) in Chile: a taxonomical and morphologic analysis. Phytotaxa 282:1-18.

Grossi, M. A., D. G. Gutiérrez, and G. Delucchi. 2012. Una mirada sobre el estado actual de la conservación de la flora argentina. Conservación Vegetal 16:15-17.

Heit, G., W. Sione, P. Aceñolaza, L. Zamboni, P. Blanco, P. Horak, and P. Cortese. 2013. Modelo de distribución potencial de Lobesnia botrana (Lepidoptera: Tortricidae). Una herramienta de planificación para su detección temprana a nivel regional. Geofocus: International Review of Geographical Information Science and Technology 13(2):179-194.

Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965-1978.

Higgins, P. A. T. 2007. Biodiversity loss under existing land use and climate change: an illustration using northern South America. Global Ecology and Biogeography 16:197-204.

Hind, D. J. N., and H. E. Robinson. 2007. Tribe Eupatorieae. Pp. 510-574 en Kubitzki, K. (ed.). The Families and Genera of Vascular Plants vol. VIII. Springer-Verlag. Berlin, Heidelberg, Alemania.

Hutchinson, G. E. 1957. Concluding remarks, Cold Spring Harbor Symposium. Quantitative Biology 22:415-427.

IPCC. 2007. Chapter 10: Global Climate Projections. Pp. 747-844 in S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.). Climatic Change 2007: The Physical Science Basis. Contribution of Working Group I to Fourth Assessment Report of The Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Jarvis, A., K. Williams, D. Williams, L. Guarino, P. J. Caballero, and G. Mottram. 2005. Use of GIS for optimizing a collecting mission for a rare wild pepper (Capsicum flexuosum Sendtn.) in Paraguay. Genetic Resources and Crop Evolution 52:671-682.

Katinas L., D. G. Gutiérrez, M. A. Grossi, and J. V. Crisci. 2007. Panorama de la familia Asteraceae (= Compositae) en la República Argentina. Boletín de la Sociedad Argentina de Botánica 42:113-129.

Köppen, W. 1923. Die Klimate der Erde. Grundiriss deer Klimakunde. X+, Berlín und Leipzig. Pp. 369.

Kumar, S., and T. J. Stohlgren. 2009. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and The Natural Environment 1:94-98.

Malcolm, J. R., C. Liu, R. P. Neilson, L. Hansen, and L. Hannah. 2006. Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology 20:538-548.

Maldonado, C., C. I. Molina, A. Zizka, C. Persson, C. M. Taylor, J. Albán, E. Chiquillo, N. Rønsted, and A. Antonelli. 2015. Estimating species diversity and distribution in the era of Big Data: To what extent can we trust public databases? Global Ecology and Biogeography 24:973-984.

Marengo, J. A., J. D. Pabón, A. Díaz, G. Rosas, G. Ávalos, et al. 2011. Climate change: evidence and future scenarios for the Andean region. Pages 110-127 in S. K. Herzog, R. Martínez, P. M. Jorgensen and H. Tiessen (eds.). Climate Change and biodiversity in the tropical Andes. Inter-American Institute of Global Change Research and Scientific Committee on Problems of the Environment (SCOPE).

Mateo, R. G., T. B. Croat, A. M. Felicísimo, and J. Muñóz. 2010. Profile or group discriminative techniques? Generating reliable species distribution models using pseudo-absences and target-group absences from natural history collections. Diversity and Distributions 16:84-94.

Mendoza, E. A., and J. A. González. 2011. Las ecorregiones del Noroeste Argentino basadas en la clasificación climática de Köppen. Serie Conservación de la Naturaleza 19:3-41.

Merow, C., M. J. Smith, and J. A. Silander. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058-1069.

Midgley, G. F., L. Hannah, D. Millar, M. C. Rutherford, and L. W. Powrie. 2002. Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Global Ecology and Biogeography 11:445-451.

Minetti, J. L. 2005. El Clima del Noroeste Argentino. Magna, San Miguel de Tucumán. Pp. 449.

Minetti, J. L., and J. A. González. 2006. El cambio climático en la provincia de Tucumán: sus impactos. Serie Conservación de la Naturaleza 17:1-32.

Minvielle, M., and R. D. Garreaud. 2011. Projecting rainfall changes over the South American Altiplano. Journal of Climate 24:4577-4583.

Morales, M. S., J. Carilla, H. R. Grau, and R. Villalba. 2015. Multi-century lakes area changes in the Southern Altiplano: a tree-ring-based reconstruction. Climate of the Past 11:1139-1152.

Moritz, C., J. L. Patton, C. J. Conroy, J. L. Parra, G. C. White, and S. R. Beissinger. 2008. Impact of a Century of Climate Change on Small-Mammal Communities in Yosemite National Park, USA. Science 322:261-264.

Núñez, M. N., S. A. Solman, and M. F. Cabré. 2009. Regional climate change experiments over southern South America. II: Climate change scenarios in the late twenty-first century. Climate Dynamics 32:1081-1095.

Parmesan, C. 2006. Ecological and Evolutionary Responses to Recent Climate Change. Annual Review of Ecology, Evolution and Systematics 37:637-669.

Peterson, A. T., M. A. Ortega-Huerta, J. Bartley, V. Sánchez-Cordero, J. Soberon, R. H. Buddemeier, and D. R. B. Stockwell. 2002. Future projections for Mexican faunas under global climate change scenarios. Nature 416:626-269.

Pimm, S. L., G. J. Russell, J. L. Gittleman, and T. M. Brooks. 1995. The future of biodiversity. Science 269:347-350.

Pliscoff, P., and T. Fuentes-Castillo. 2011. Modelación de la distribución de especies y ecosistemas en el tiempo y en el espacio: una revisión de las nuevas herramientas y enfoques disponibles. Revista de Geografía Norte Grande 48:61-79.

Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231-259.

Phillips, S. J., and M. Dudík. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161-175.

Quantum GIS Development Team. 2017. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. URL: qgis.osgeo.org.

Qin, Z., J. Zhang, A. Ditommaso, R. Wang, and R. Wu. 2014. Predicting invasions of Wedelia trilobata (L.) Hitchc. with Maxent and GARP models. Journal of Plant Research 128:763-775.

Radosavljevic, A., and R. P. Anderson. 2014. Making better MAXENT models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography 41:629-643.

Riahi, K., S. Rao, V. Krey, C. Cho, V. Chirkov, G. Fischer, G. Kindermann, N. Nakicenovic, and P. Rafaj. 2011. RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Climatic Change 109:33-57.

Sandel, B., L. Arge, B. Dalsgaard, R. G. Davies, K. J. Gaston, W. J. Sutherland, and J. C. Svenning. 2011. The influence of Late Quaternary climate-change velocity on species endemism. Science 334:660-664.

Särkinen, T., P- Gonzáles, and S. Knapp. 2013. Distribution models and species discovery: the story of a new Solanum species from the Peruvian Andes. Phytokeys 31:1-20.

Spencer, C., K. Yamamoto, J. Fang, H. Constable, M. Koo, and J. Wieczorek. 2006. Georeferencing for dummies. Traducido por S. Celis, G. Iglesias, and F. Uribe. Berkeley: University of California, California. USA. URL: www.herpnet.org/herpnet/documents/georeffordummy.xls.

Scheldeman, X., L. Willemen, G. Coppens D’eeckenbrugge, E. Romejin-Peeters, M. T. Restrepo, J. Romero Motoche, D. Jiménez, M. Lobo, C. I. Medina, C. Reyes, D. Rodríguez, J. A. Ocampo, P. Van Damme, and P. Goetgebeur. 2006. Distribution, diversity and environmental adaptation of highland papayas (Vasconcellea spp.) in tropical and subtropical America. Biodiversity and Conservation 16:1867-1884.

Scheldeman X., and M. van Zonneveld. 2010. Manual de Capacitación en Análisis Espacial de Diversidad y Distribución de Plantas. Biodiversity International, Roma, Italia. Pp. 186.

Szumik, C., L. Aagesen, D. Casagranda, V. Arzamendia, D. Baldo, L. E. Claps, F. Cuezzo, J. M. Díaz Gómez, A. Di Giacomo, A. Giraudo, P. Goloboff, C. Gramajo, C. Kopuchian, S. Kretzschmar, M. Lizarralde, A. Molina, M. Mollerach, F. Navarro, S. Nomdedeu, A. Panizza, V. V. Pereyra, M. Sandoval, G. Scrocchi, and F. O. Zuloaga. 2012. Detecting areas of endemism with a taxonomically diverse data set: plants, mammals, reptiles, amphibians, birds, and insects from Argentina. Cladistics 28:317-329.

Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. Ferreira De Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. Van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. Townsend Peterson, A. L. Phillips, and S. E. Williams. 2004. Extinction risk from climate change. Nature 427:145-148.

Trethowan, P., M. P. Robertson, and A. Mcconnachie. 2011. Ecological niche modeling of an invasive alien plant and its potential biological control agents. South African Journal of Botany 77:137-146.

Urrutia, R., and M. Vuille. 2009. Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research: Atmospheres 114:1-15.

Van Vuuren, D. P., E. Stehfest, M. G. J. den Elzen, T. Kram, J. van Vliet, S. Deetman, M. Isaac, K. Klein Goldewijk, A. Hof, A. Mendoza Beltrán, R. Oosternrijk, and B. van Ruijven. 2011. RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Climatic Change 109:95-116.

Vilatersana, R., M. Sanz, A. Gallan, and E. Castells. 2016. The invasion of Senecio pterophorus across continents: multiple, independent introductions, admixture and hybridization. Biological Invasions 18(7):2045-2065.

Vuille, M., B. Francou, P. Wagnon, I. Juen, G. Kaser, B. G. Mark, and R. S. Bradley. 2008. Climate change and tropical Andean glaciers: Past, present and future. Earth-Science Reviews 89:79-96.

Wolmarans, R., M. P. Robertson, and B. J. Van Rensburg. 2010. Predicting invasive alien plant distributions: how geographical bias in occurrence records influences model performance. Journal of Biogeography 37:1797-1810.

Young, K. E., L. B. Abbott, C. A. Caldwell, and T. S. Schrader. 2013. Estimating suitable environments for invasive plant species across large landscapes: A remote sensing strategy using Landsat 7 ETM+. International Journal of Biodiversity and Conservation 5:122-134.

Cambio climático y modelado de distribución de especies de Stevia (Asteraceae) en el noroeste de la Argentina

Published

2017-12-17

How to Cite

Rodríguez-Cravero, J. F., Grossi, M. A., Fuentes-Castillo, T., & Gutiérrez, D. G. (2017). Climatic change and species modeling of Stevia (Asteraceae) in northwestern Argentina. Ecología Austral, 27(3), 462–473. https://doi.org/10.25260/EA.17.27.3.0.588