Soil loss as a result of the interactions between natural landscape attributes and human activities in Ventania, Argentina

Authors

  • María I. Delgado National Scientific and Technical Research Council (CONICET) and School of Agronomy and Forestry Sciences, National University of La Plata. Buenos Aires, Argentina.

DOI:

https://doi.org/10.25260/EA.18.28.1.0.608

Abstract

The Ventania System is a hilly area emerging in the extended Pampas plains of Argentina. Shallow soils with rock fragments and steep slopes are the main limitations for agriculture in this area. The effect of land use changes on annual soil loss on these soils in the Belisario Creek watershed was estimated. The universal soil loss equation (USLE) was applied for 1966 and 2016 to estimate soil loss generated by water erosion at the watershed scale. The equation was fed with rainfall, soil, slope, land use and management local data. Critical areas were identified using a geographic information system. The watershed has increased its fragility. For instance, the ranges of high and very high risk of soil loss (>50 Mg.ha-1.y-1) increased their coverage from 18% (1966) to 44% (2016). This increment was caused by land use transformations. This shows the urgent need to establish sustainable management strategies, especially considering livestock and demographic expansion. Similar methodological approaches might also be applied to analyse nearby watersheds, aiming to identify priority areas for designing future management strategies.

https://doi.org/10.25260/EA.18.28.1.0.608

Author Biography

María I. Delgado, National Scientific and Technical Research Council (CONICET) and School of Agronomy and Forestry Sciences, National University of La Plata. Buenos Aires, Argentina.

- Investigadora Asistente CONICET

- Ayudante Diplomado en FCAyF-UNLP

References

Ali, S. A., and H. Hagos. 2016. Estimation of soil erosion using USLE and GIS in Awassa Catchment, Rift valley, Central Ethiopia. Geoderma Regional 7:159-166.

Boardman, J. 2006. Soil erosion science: Reflections on the limitations of current approaches. Catena 68:73-86.

Calder, I. 1998. Water use by forests, limits and controls. Tree Physiology 18:625-631.

Delgado, M. I. 2010. Modelización de la pérdida de suelo superficial en sierras del sudoeste de la provincia de Buenos Aires. Revista de la Facultad de Ciencias Agrarias UNCuyo 42:1-14.

Delgado, M. I. 2012. Comportamiento hidrológico en ambientes serranos. Estudio de caso cuenca del Arroyo Belisario. Provincia de Buenos Aires. Tesis doctoral en Ingeniería. FCEIA, Universidad Nacional de Rosario. Pp. 200.

Delgado, M. I. 2014. Agresividad de las Precipitaciones en el Sudoeste de La Provincia de Buenos Aires. E-ICES 10: Décimo Encuentro del International Center for Earth Science. Centro Atómico Constituyentes, Buenos Aires.

Delgado, M. I., F. J. Gaspari, and E. E. Kruse. 2015. Land Use Changes and Sediment Yield on a Hilly Watershed in Central-East Argentina. Soil and Water Research 10(3):189-197.

Devatha, C. P., V. Deshpande, and M. S. Renukaprasad. 2015. Estimation of soil loss using USLE model for Kulhan watershed, Chattisgarh-A case study. Aquatic Procedia 4:1429-1436.

EI-Swaify, S. A., E. W. Dangler, and C. L. Armstrong. 1982. Soil erosion by water in the tropics. University of Hawaii.

Fang, N. Z, Z. H. Shi, B. J. Yue, and L. Wang. 2013. The Characteristics of Extreme Erosion Events in a Small Mountainous Watershed. PLoS ONE 8(10):e76610.

FAO. 1980. Provisional Methodology for Soil Degradation Assessment. Rome.

Feller, M. 1981. Water balance in Eucalyptus regnans, E. obliqua y Pinus radiata forest in Victoria. Australian Forestry 44(3):153-161.

Fernández, C., E. R. Parodi, and E. J. Cáceres. 2009. Limnological characteristics and trophic state of Paso de las Piedras Reservoir: An inland reservoir in Argentina. Lakes and Reservoirs. Research and Management 14:85-101.

Huber, A., and A. Iroumé. 2001. Variability of annual rainfall partitioning for different sites and forest covers in Chile. Journal of Hydrology 248:78-92.

IGM. Instituto Geográfico Militar. 1979. Hoja Topográfica No 3963-6-1.

INTA. Instituto Nacional de Tecnología Agropecuaria. 1987. Cartas de Suelos de Argentina. Hoja No 3963-6-1. Instituto de Suelos Castelar, Buenos Aires.

Jain, M. K., and U. C. Kothyari. 2000. Estimation of soil erosion and sediment yield using GIS. Hydrol Sci J 45:771-786.

Li, L., S. Du, L. Wu, and G. Liu. 2009. An overview of soil loss tolerance. Catena 78:93-99.

Li, Z., J. Huang, G. Zeng, X. Nie, W. Ma, W. Yu, W. Guo, and J. Zhang. 2013. Effect on Erosion on Productivity in Subtropical Red Soil Hilly Region: A Multi-Scale Spatio-Temporal Study by Simulated Rainfall. PLoS ONE 8(10):e77838.

Loydi, A., R. A. Distel, and S. Zalba. 2010. Large Herbivore Grazing and Non-Native Plant Invasions in Montane Grasslands of Central Argentina. Natural Areas Journal 30(2):148-155.

López Cadenas de Llano, F. 1998. Restauración hidrológica forestal y control de la erosión. Ingeniería ambiental. Tragsa - Tragsatec, Ministerio del Medio Ambiente, Ediciones Mundiprensa, Madrid, España. Pp. 945.

Marucci, P. L., N. L. Olivera, L. I. Brugnoni, M. G. Sica, and M. A. Cubitto. 2011. The occurrence of Shiga toxin-producing Escherichia coli in bathing Water of the Sierra de la Ventana region, Buenos Aires Province, Argentina. Evironmental Monitoring and Assessment 175:1-8.

Montgomery, D. R. 2007. Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences of the United States of America 104(33):13268-13272.

O’Geen, A. T., and L. J. Schwankl. 2006. Understanding Soil Erosion in Irrigated Agriculture. Publication 8196. Division of Agriculture and Natural Resources, University of California.

Pandey, A., V. M. Chowdary, and B. C. Mal. 2007. Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing. Water Resource Management 21:729-746.

Pappas, E. A., D. R. Smith, C. Huang, W. D. Shuster, and J. V. Bonta. 2008. Impervious surface impacts to runoff and sediment discharge under laboratory rainfall simulation. Catena 72:146-152.

Podmanicky, L., K. Balázs, M. Belényesi, Cs. Centeri, D. Kristóf and N. Kohlheb. 2011. Modelling soil quality changes in Europe. An impact assessment of land use change on soil quality in Europe. Ecological Indicators 11:4-15.

Putuhena, W., and I. Cordery. 2000. Some hydrological of changing forest cover from Eucalyptus to Pinus radiata. Agricultural and forest meteorology 100:59-72.

Quattrocchio, M. E., A. M. Borromei, C. M. Deschamps, S. C. Grill, and C. A. Zavala. 2008. Landscape evolution and climate changes in the Late Pleistocene-Holocene, southern Pampa (Argentina): Evidence from palynology, mammals and sedimentology. Quaternary International 181:123-138.

Rojas, A., and A. Conde. 1985. Estimación del factor R de la Ecuación Universal de Pérdidas de

Suelo para el centro-este de la República Argentina. Ciencia del Suelo 3(1-2):85-94.

Sadeghi, S. H. 2004. Application of MUSLE in prediction of sediment yield in Iranian conditions. ISCO2004-13th International Soil Conservation Organization Conference-Conserving Soil and Water for Society: Sharing Solution. Paper No. 998, 1-4.

Tramblay, Y., T. Ouarda, A. St-Hilaire, and J. Poulin. 2010. Regional estimation of extreme suspended sediment concentrations using watershed characteristics. Journal of Hydrology 380:305-317.

USDA. 1997. Agriculture Handbook Number 703. Predicting Soil Erosion by Water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Washington DC, USA.

Wischmeier, W. H., and D. D. Smith. 1978. Predicting rainfall erosion losses. A guide to conservation planning. Unites States Department of Agriculture Handbook No 537. Washington, USA.

Yang, M., X. Li, Y. Hu, and X. He. 2012. Assessing effects of landscape pattern on sediment yield using sediment delivery distributed model and a landscape indicator. Ecological Indicators 22:38-52.

Zalba, S. M., Y. Cuevas, and R. Boo. 2008. Invasion of Pinus halepensis Mill. following a wildfire in an Argentine grassland nature reserve. Journal of Environmental Management 88:539-546.

La pérdida de suelo como resultado de las interacciones entre los atributos del paisaje natural y las actividades humanas en Ventania, Argentina

Downloads

Published

2018-03-03

How to Cite

Delgado, M. I. (2018). Soil loss as a result of the interactions between natural landscape attributes and human activities in Ventania, Argentina. Ecología Austral, 28(1), 074–080. https://doi.org/10.25260/EA.18.28.1.0.608

Issue

Section

Short Communications